Pré-Publication, Document De Travail Année : 2023

A minimal mass blow-up solution on a nonlinear quantum star graph

Résumé

We construct a finite-time blow-up solution to the mass-critical focusing nonlinear Schrödinger equation on a metric star graph with an arbitrary number of edges. We show that all solutions are global if their mass is smaller than an explicit constant, called ``minimal mass''. We then construct a solution with minimal mass and arbitrary energy, which blows up in finite time at the vertex of the star graph. The blow-up profile and blow-up speed are explicitly characterized. The main novelty of the paper is the construction of the blow-up profile in time-dependent domains of singularly perturbed Laplacians.
Fichier principal
Vignette du fichier
genoud-lecoz-royer.pdf (627.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04045570 , version 1 (24-03-2023)
hal-04045570 , version 2 (25-11-2024)

Identifiants

Citer

François Genoud, Stefan Le Coz, Julien Royer. A minimal mass blow-up solution on a nonlinear quantum star graph. 2024. ⟨hal-04045570v2⟩
162 Consultations
75 Téléchargements

Altmetric

Partager

More