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Orientation of shear bands for a rigid plastic frictional material in simple 

shear 

The orientation of shear bands is investigated analytically and numerically for a rigid 

plastic frictional material in simple shear. The model is based on co-axial flow rule, 

incompressible deformations and a friction factor which depends on the strain history. 

Since we are focussing on geological timescales, the influence of elasticity is neglected. 

Firstly a linear stability analysis is performed confirming Rice’s 1976 assertion [6] that 

in the hardening regime bifurcation is possible at every stage. Orientation of shear 

bands against the less compressive principal axis lies anywhere between the Roscoe and 

Coulomb angles, namely between /4+/2 and /4+/2 where and  are the 

mobilised angles of friction and dilatancy respectively (in our study we assume 

The linear stability analysis leaves open the question of which orientation will 

actually emerge in a boundary value problem which consider all nonlinearities. This 

question is addressed in a finite element study of simple shear with periodic boundary 

conditions in the shear direction. Our simulations show temporary inclined shear bands 

in the hardening regime followed by a persistent horizontal shear band. A sensitivity 

study with respect to geometric and constitutive parameters indicates that the height of 

the sample controls the orientation of the inclined shear bands. Finally we extend our 

analytical and numerical studies to Cosserat plasticity. It turns out that inclined shear 

bands are suppressed for large values of the internal length R (narrow bands). The case 

of a standard continuum is gradually recovered for small R (wide bands).  

Keywords: finite element method, simple shear, plasticity, shear band, orientation, 

linear stability analysis, Cosserat theory. 
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1. Introduction 

Localisation of deformation during monotonic loading refers to the spontaneous emergence of 

one or several narrow layers of intense shearing, called shear bands (also known as shear 

localisation or strain localisation). Because strain localisation occurs in a large range of 

materials (concrete, metals, soils, rocks) and may affect the stability of structures, this topic 

has attracted a significant interest during the past four decades [1, 2].  

Following previous developments [3-5], we assume that strain localisation may be 

seen as a constitutive instability. Since we are focussing on geological timescales, we neglect 

the influence of elasticity and consider a non associated rigid plastic material. According to 

Rice [6], localisation is possible for any value of the hardening rate for a rigid plastic model 

with a smooth yield locus. The conditions for the onset of shear bands as well as their 

orientations have been studied. For elastoplastic models (e.g. with a Mohr-Coulomb or 

Drucker-Prager type yield criterion), the orientation of shear bands against the direction of the 

less compressive principal axis is characterised by three values mentioned in literature: 

 Coulomb angle: 
24


  

 Roscoe angle [7]: 
24


  

 Intermediate angle (Arthur et al. [8], Vardoulakis [9]):
 

24

 
  

where  and  are the mobilised angles of friction and dilatancy respectively. The Coulomb 

angle corresponds to the maximum stress obliquity plane and the Roscoe angle to the zero-

extension direction. The intermediate angle corresponds approximately to the lowest 

bifurcation point in the stress-strain curve of a hardening elastoplastic model [9, 10]. By 

allowing the material outside the shear band to unload elastically, Vermeer [11] has shown 
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that all the orientations between the Roscoe and Coulomb angles are admissible in hardening 

elastoplastic models. This range is confirmed by experimental results for soils in plane strain 

compression tests [12, 13], in triaxial tests [14], in torsional shear tests [12] and in simple 

shear tests [15]. 

Linear stability analysis has been used in literature to characterize the conditions for 

the onset of shear bands and their orientations (see e.g. [16, 17]). This method is applied in 

this paper and its results confirm the previous work of Rice [6] and Vermeer [11]: (1) 

localisation is possible at any stage of hardening and (2) the orientation can be anywhere 

between the Roscoe and Coulomb angles. However this analytical approach does not allow us 

to predict which orientation will actually emerge. Therefore in the second part of the paper we 

turn to a numerical approach.  

Numerical studies concerning the orientation of shear bands for certain constitutive 

models under certain loadings have been proposed within the framework of the finite element 

method (e.g. [18]) as well as the discrete element method (e.g. [19]). In this paper we focus on 

continuum mechanics for geophysical materials. In particular, two papers [17, 20] propose a 

systematic finite element study of the orientation of the shear bands for incompressible 

viscous - plastic materials under plane strain compression/extension. Lemiale et al. [17] 

considered a Drucker-Prager type failure criterion with material softening, whereas Kaus [20] 

introduced a Mohr-Coulomb type failure criterion with ideal plasticity. Note that for 

incompressible materials, these two failure criteria are identical in two dimensions. Most of 

the literature focuses on rectilinear deformation of the ground state, whereas simple shear 

tests are seldom treated. Indeed the homogeneity with respect to stress and strain is not easily 

guaranteed experimentally [15] and numerically. This paper investigates the sparsely covered 

case of simple shear.  
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The constitutive relationship selected does not introduce an internal length scale and 

therefore suffers from a strong mesh dependency [21] when the governing equations lose 

ellipticity. To overcome this difficulty, regularization methods have been developed [21] (see 

also review in [22]). In particular Cosserat continuum mechanics [23] introduces three 

rotations as additional degrees of freedom for each material point. In the context of a granular 

material represented as a random assembly of rods with the same radius R, this theory allows 

Mühlhaus and Vardoulakis [24] to determine the thickness of shear bands as a linear function 

of R. This result is in agreement with experimental observations. Given the physical meaning 

that the Cosserat theory provides, we use it to extend our original constitutive model.  

The aim of this paper is to study analytically and numerically the orientation of shear 

bands for a frictional rigid plastic material with strain dependent pressure sensitivity in simple 

shear. The paper is organised as follows. Section 2 presents the constitutive model. A linear 

stability analysis in Section 3 provides the orientation of shear bands permitted by the 

constitutive relationship. Both Sections 2 and 3 consider both a standard and a Cosserat 

continuum (i.e., a continuum without and with internal length respectively). Sections 4 and 5 

present numerical results and compare them to analytical results. Section 4 deals with a 

standard continuum and Section 5 with a Cosserat continuum. Section 6 concludes the paper.  

2. Constitutive relations 

2.1 Standard continuum 

This section considers a standard continuum, a continuum in which internal length scales of 

the material are ignored. Note that in a later section we will extend the scope of our study to a 

continuum in which internal length scales are considered. 

Here we assume the well known Drucker-Prager yield criterion: 
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 p   (1) 

where ijij 
2

1
 is the equivalent shear stress, ' is the deviatoric stress tensor, 

summation over equal indexes is implied,  is the mobilised factor of friction (  sin , 

where  is the mobilised angle of friction) and p is the pressure defined as the opposite of the 

mean stress.  

For the numerical study we require a specific functional form for the mobilised 

friction factor. The following function fits at least qualitatively most known experimental 

results for loose and dense sands (loose sand is obtained for n = 2 and dense sand for n > 2):  

 
  02

2
2

1
)( 




 




 

n
n  (2) 

where 0, ∞ and n are constitutive parameters and   is the equivalent shear strain. Figure 1 

shows an illustration of (2) for 0 = 0.1, ∞ = 0.245 and n = 7. The flow rule (3) defines the 

orientation of the stretching tensor D in stress space. Note that D consists only in the plastic 

part, possible elastic and viscous parts are neglected.  

 










2

ij

ij

ijD






   (3) 

where   2/,, ijjiij vvD  , vi is the ith component of the velocity, the comma followed by an 

index denotes the partial derivative with respect to that coordinate and   is the equivalent 

shear strain rate. Note that the dot symbol means a total derivative with respect to a time like 

loading parameter In the simple shear case considered here is the monotonically 

increasing displacement, prescribed on the top of the shear layer. The shear strain rate is 

defined as usual as: 
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 ijijDD2  (4) 

In Eulerian formulation, the relation between the equivalent shear strain and the equivalent 

shear strain rate is defined as follows:  

 
i

i
x

v















  (5) 

We follow the practise in geophysics of assuming incompressibility (e.g. [17, 20]) of the 

deformation i.e., 0, kkv . This assumption restricts the generality of the results somewhat; 

however from previous shear banding studies related to single phase materials it is well 

known that a choice of 0  does not affect the qualitative features of the shear banding 

process, except when   . Aside from providing a quantitative description of shear banding, 

the aim of this paper is to highlight qualitative mechanisms using a reduced number of 

parameters.  

2.2 Non-standard continuum (Cosserat plasticity) 

In this subsection, we extend the previous model by introducing additional kinematic and 

static variables, namely the Cosserat spin tensor Wc and the couple stress or moment stress 

tensor m. This extended or non-standard continuum formulation allows us to consider the 

effect of an internal length scale within the framework of a continuum theory. Based on the 

formulation given by Mühlhaus and Vardoulakis [24], the equivalent shear stress is defined 

by:  

 ijijijijijij mm
R

a
aa

2

3
][][2)()(1    (6) 

where a1, a2 and a3 are constitutive parameters, R is the internal length (e.g. effective particle 
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radius), ’(ij) and ’[ij] are the components of symmetric and antisymmetric parts of the 

deviatoric stress tensor respectively.  

The evolutions of the stretching tensor D, of the relative spin tensor W-Wc and of the 

rate of the micro-curvature tensor  are determined by the following relationships:  

 
)(ij

ijD








   (7.a) 

 
][ij

c

ijij WW








   (7.b) 

 
ij

ij
m





   (7.c) 

where 
2

,, ijji

ij

vv
W


  and c

jlkilkij W ,
2

1
 , where   is the permutation symbol.  

Combining the relationships (7.a), (7.b) and (7.c) yields the following relationship 

between the equivalent strain rate   and the kinematic variables D, W-Wc and : 

 ijij

c

ijij

c

ijijijij
a

R
WWWW

a
DD

a


3

2

21

))((
11

  (8) 

3. Linear stability analysis 

In the following linear instability analysis we focus on bifurcation or eigen-modes of the shear 

band type, i.e., modes in which the variables depend on one coordinate only, namely 

)( iinxy   where in  is the normal vector of the shear band plane. 

3.1 Standard continuum 

We consider a plane, semi infinite domain ),( 21 xx   subject to simple shear. We consider 
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an infinitesimal continuation D  of the stretching 0
D  in the ground state, thus: 

   













2212

0

12

12

0

1211

DDD

DDD




D  (9) 

From the flow rule (Eq. 3) and the yield criterion (Eq. 1), we obtain:  

 ijij D
p








)(2
'   (10) 

Linearising (10) yields:  

 ijijijijij D
p

D
p

D
p

D
p




























)(2)(2)(2)(2
'

2

,
  (11) 

The advection term in (5) vanishes for the homogeneous ground states so that material and 

spatial increments coincide. We consider displacement fields of the form:  

  exuxu  )(),(  (12) 

where x is the position vector,  a time-like, monotonically increasing loading parameter and 

 the growth coefficient. In the present case is the shear displacement prescribed at 

),( 21 hxx  , where h is the initial width of the shear layer. We obtain: 

    (13) 

The incremental, constitutive relationships read: 

 

pDp

v
v

p
p

v
v

p
p
















 





12,12

2,2

2,1

22

1,1

2,1

11

2

2

2

 (14) 
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Given the assumption of incompressibility and the plane strain condition, we introduce a 

stream function  defined as: 

 
1,2

2,1









v

v
 (15) 

Substituting (13)-(15) into the incremental form of the equilibrium conditions: 

 
0

0

2,221,21

2,121,11








 (16) 

yields the following equations for ),( p :  

 

02)(
1

0)(
1

2

122,

2,1

111,221,,2,1,

112,222,,211,

2,1

2,1,

























v

p
ppp

p
v

p
pp

 (17) 

By elimination of p  from (17) we obtain: 

 0
221

2
411

1222,

2,1

2

2111,

2,1

2

1122,,

2,1

2222,,1111,, 













 

















 

vvv
(18) 

We look for solutions of the form: 

 )cos(sin 21 xxF    (19) 

where  is the orientation of the shear band counted clockwise positive from the x-axis (Fig. 

2).  

Substitution of (19) into (18) yields the following condition for the formation of shear 

bands in terms of the growth coefficient , the orientation , the mobilised factor of friction 

and the equivalent shear strain   
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 



,

2

2,1 )2sin(2sin

2cos




v
 (20) 

Every quadruplet which satisfies this relation corresponds to a permissible shear band. This 

result is in agreement with Rice’s statement in [6] mentioned in the introduction. There are no 

restrictions on the magnitude of the growth coefficient for infinite domains. In this case the 

most critical band orientation would correspond to the one maximising . For 0,   

asymptotic boundary maxima (see Eq. 20) are obtained for ]2/[0    and ]2/[2/   ; in 

the latter case we have employed the relationship  sin . The two orientations correspond 

to the well known Roscoe and Coulomb orientations respectively. 

Figure 3 represents the ratio 
2,1v


 as a function of  for three different values of the 

equivalent shear strain . The vertical asymptotes correspond to the Roscoe and Coulomb 

angles. For the parameters selected (0 = 0.1, ∞ = 0.245 and n = 7), the mobilised friction 

factor )(  reaches its peak at  = 0.2. We observe a clear distinction between the curves 

corresponding to the pre- and post-peak range: before the peak, the angles between the 

Roscoe and Coulomb angles lead to positive (finite) values of 
2,1v


 and therefore are 

admissible in the sense that the corresponding mode will grow, whereas after the peak, the 

angles between the Roscoe and Coulomb angles lead to negative (finite) values of 
2,1v


 and 

therefore are not admissible. The analytical development presented here refers to an infinite 

domain, whereas in the numerical simulations in Section 4 we consider a finite domain with 

),( 211 hxxv   prescribed. This boundary condition imposes a constraint on the growth 

coefficient; we must have .  In this case the Roscoe and Coulomb solutions are only 

admissible for 0,  , i.e., at the peak or for  . For finite 2,1/ v we re-write (20) as: 
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2,1

2

,

2cos

)2sin(2sin

v









  
  (21) 

Assuming that 2,1/ v  is finite and constant it is reasonable to assume that a band with an 

orientation maximising   /,  will appear first in the loading history. Since (20) has a 

minimum at 4/   for << 1, (21) has a maximum at the same value, namely at 4/  . 

This orientation corresponds to the so called intermediate shear band angle, attributed to 

Vardoulakis [9]. Since the linear instability analyses contain many simplifying assumptions, 

even for the onset of the localisation process from a homogeneous ground state, it is not clear 

which band orientation will eventually emerge and persist. This question will be addressed in 

a numerical study in Section 4. 

3.2 Cosserat continuum 

Proceeding as in the previous section, we consider the following continuation of the 

deformation from the ground state: 
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
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22221212

12121111
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0
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0

1211




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



3

c

κ
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D
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WWWW

WWWW

DDD

DDD

 (22) 

From the flow rules (Eq. 7) and the yield criterion (Eq. 1), we obtain the following 

relationships:  

 ijij D
a

p







1

)(
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c
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a
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
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
 (23) 
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a
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3
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3
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Linearising (23) yields:  
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a
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
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
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a

pR

a

pR

a

pR

a

pR
m 3

3

2

3

3

2

32

3

2

3

3

2

,

3 





















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
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Under the conditions of simple shear (24) reduces to: 

 1,1
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11 v
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p
p 


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1
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ii W
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a

R
m ,21
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2

3 

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Within the framework of the Cosserat theory, three incremental equations of equilibrium have 

to be considered in a two-dimensional problem.  
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14 

 

As in the previous subsection, we introduce a stream function . By restricting our 

development to small values of a2 (equivalent to a high Cosserat viscosity, cp. (25)), we may 

assume the validity of a so-called constrained Cosserat continuum (e.g. [25-26]) for simplicity. 

In this case:  

 )(
2

1
22,11,2121   WW c  (27) 

Insertion of (25) and (27) into (26) yields:  
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By insertion of solutions of type (19) the equation of motion (28) reduces to: 

 

















12sin
24

2sin
4

2sin
2

2cos
2

1

0

12,13

2

2,1

2

1

2
2

2,11

2

,

12

)(2)(



















ava

R

vavaa

FF IVVI

 (29) 

where the super script in roman numeral denotes the order of the derivative with respect to 

)( 2211 xnxny  . 

We are interested in periodic solutions, thus 2 must be strictly positive. In analogy to 

the situation in a standard continuum, we choose 
2

1
1 a  and 03 a . The condition 02   

implies:  

 0)2(sin
2sin

2cos
1

2,1

2

,  






v

 (30) 
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Assuming   2/sin0 1   , we obtain the following three cases: 

 If 0,  , 



,

2

2,1 )2sin(2sin

2cos




v
 (31.a) 

 If 0,  , 




  2cos

)2sin(2sin
2

,

2,1 


v
 (31.b) 

 If 0,  , 0)2(sin
2sin

2,1

 


v
 (31.c) 

Equation (31.b) and Equation (31.c) are automatically satisfied if we assume that the 

orientation angle  remains between the Roscoe and Coulomb angles. Equation (31.a) 

indicates that if the bifurcation occurs in the hardening regime, then the growth coefficient  

is higher than it would be in a standard continuum. This observation is consistent with 

Mühlhaus and Vardoulakis [24] concluding that “localisation of the deformation into a shear 

band is evolving at states beyond the bifurcation state of the classical theory”.  

In the following section we investigate the fully non-linear problem in terms of 

numerical solutions based on the finite element method. 

4. Finite element simulations, standard continuum 

4.1 The numerical model 

The simulations are performed with the FEM software Escript [27]. Figure 2 depicts the 

domain investigated as well as the boundary conditions. For sake of clarity, the mesh is not 

added to this figure. Note that the mesh is structured (see Table 1 for the reference size of the 

elements). We assume periodic boundary conditions on the sides which makes the problem 

somewhat similar to the situation in a torsional shear test with an infinite cell radius. As in the 

previous sections we assume that the deformation is plane. Here we assume viscous-plasticity 
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instead of rigid-plasticity. This is implemented by setting a cut-off value for the effective 

viscosity (hereafter referred to as cut-off viscosity ). Our constitutive relationship then reads:  

 ijeffijij Dp  2  (32) 

where ),min(







p
eff  . In Subsection 4.3 we present a sensitivity study with respect to . 

The geometric and constitutive reference parameters are given in Table 1. To facilitate the 

emergence of inclined shear bands, we introduce an imperfection, i.e., a zone with a viscosity 

100 times lower than the cut-off viscosity in the remaining domain. Concerning the size and 

the location of the heterogeneity, we follow Kaus’s recommendations [20], i.e., the 

imperfection is resolved numerically with 16 elements and it is located sufficiently far from 

the top boundary (more than 10 times the heterogeneity size). De Borst [28] indicates that by 

introducing an imperfection in the domain, the bifurcation problem is transformed into a limit 

problem and therefore: (1) the correct orientation (i.e., the orientation of the un-perturbed 

problem) may be determined but (2) the equivalent shear strain at the onset of bifurcation 

cannot be properly estimated. As a result, we focus in the paper on the band orientation and 

consider carefully the equivalent shear strain at the onset of shear banding.  

The numerical resolution of this problem requires some care because of the 

incompressibility of the material. We adopt an iterative penalty method (e.g. [29]). The 

penalty factor is chosen 100 times higher than the cut-off viscosity. In a preliminary study, we 

used bilinear interpolation functions for the velocities and the pressure was approximated by a 

piecewise constant field. Single point numerical integration was employed for the pressure 

term as well as the artificial compressibility term in the velocity equation. This method led to 

sharp shear bands but introduced a significant tolerance sensitivity probably due to a 

numerical checkerboard instability in the pressure field. That is why in this paper we use so 
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called macro elements which do not display these instabilities. For macro elements the 

pressure and velocity are approximated by a polynomial of order 1 but the velocity 

approximation is based on a one-step global refinement of the elements. Note that in this 

paper the size of elements refers to the refinement used for the velocity approximation. The 

non linear problem is solved iteratively by means of a secant method based on the effective 

viscosity (Eq. 32). We used a secant method because of its relative robustness in connection 

with problems involving hardening followed by softening as well as plastic loading-viscous 

unloading. The convergence criterion is based on the L∞ norm and the error in the velocity 

field is defined as: 

 








n

nn

n






1

 (33) 

where n means the velocity at the iteration n and 


 the maximum value of the absolute 

value over all components and all data points. The convergence tolerance is set to 10-4. Note 

that in our study, the maximal velocity is prescribed at the top of the domain. 

Geometric effects are considered within an Eulerian framework. In the present case 

the only location in our model where geometric effects need to be considered is in the 

advection term in (5). Equation (5) is solved using the two-step explicit Taylor-Galerkin 

method outlined in [30].  

A sensitivity study with respect to the size of the incremental loading step was 

performed and showed that a value of 0.01 is sufficient to reproduce and investigate the 

salient features of shear bands.  

The orientation of the shear bands is measured from a high-resolution plot of the 

equivalent shear strain rate. The accuracy of the measurement depends on the curvature of the 

band and therefore on the distance over which the band is a straight line. In the following, the 
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shear band is considered straight over the reference width of the simulation (Lref = 4). The 

error of measurement is estimated to be equal to ±0.2 degree. Viscous unloading outside the 

shear bands occurs upon bifurcation. Therefore the width of the shear bands can be 

characterised without ambiguity by the extent of the plastic zone.  

In the following subsection, we present the results given by a simulation based on the 

reference parameters depicted in Table 1 and analyse the shear bands in terms of orientation, 

thickness and intensity. Note that given the periodic boundary conditions and assuming that 

the band orientation is constant throughout the domain, a straightforward geometrical relation 

can be determined between the orientation of the shear bands, their spacing and the width of 

the domain. The sensitivity of the results with respect to the parameter values (Table 1) will 

also be investigated. 

4.2 Simulation based on the reference parameters 

Figure 4 (a) shows the mean shear stress 12 as a function of the mean equivalent shear strain. 

The mean variables refer to the variables at the location (x1 = 0.2; x2  = 0.5). By considering 

this location, the difference between the simulations with and without imperfection is not 

significant before the first bifurcation. Figure 4 (b-d) represents the equivalent shear strain 

rate at three stages of the simulation. The first stage (Fig. 4 (b)) corresponds to pre-bifurcation, 

in which the simple shear ground state dominates. The spatial distribution of the variables is 

quasi-homogeneous and the velocity profile along a cross-section (Fig. 5) is almost linear. 

The second stage (Fig. 4(c)) starts with the emergence of two sets of shear bands. The first set 

of shear bands consists of two horizontal shear bands at the bottom and top of the domain. 

The second set corresponds to inclined shear bands whose orientation angles are different 

from zero and smaller than 45 degrees. The velocity profile in Figure 5 highlights the 

alternation between plasticised zones (second set of shear bands) and the viscous quasi-rigid 
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unloaded zones. Finally the third stage (Fig. 4(d)) is characterized by a significant decrease of 

the shear stress and a high value of the equivalent shear strain ( 16 ) within a horizontal 

shear band. The inclined shear bands have disappeared. Consequently the velocity profile 

shows a quasi-rigid zone and a highly sheared zone (Fig. 5). Note that the persistent 

horizontal shear band extends over two elements (Fig. 4(d)). This is due to the use of different 

meshes for the pressure and the velocity.  

We investigate the orientation of the second set of shear bands at the loading 

increment following the bifurcation. We measure an angle of 4.5 degrees (Fig. 4(c)) and 

compare it to the classical values given in the literature: 0 degree (Roscoe angle), 8.3 degrees 

(intermediate angle) and 16.6 degrees (Coulomb angle). It appears that the observed angle 

does not correspond to a particular value. According to the value of the equivalent shear strain 

at bifurcation (bif = 0.092) and the orientation of the shear band, the value of the ratio 
2,1v


 is 

determined (Fig. 6, h=1). The ratio is strictly positive so that the angle is permitted by the 

previous analysis (see Subsection 3.1). The orientation of the persistent horizontal shear band 

corresponds to the Roscoe angle. However it seems difficult to track analytically the 

emergence of this shear band since the inclined shear bands modify the ground state and 

therefore the conditions of the previous analysis are not fulfilled anymore just before the 

formation of the horizontal shear band. 

To confirm the results with respect to mesh dependency, we carry out two additional 

calculations with a coarse mesh (200 x 50 elements) and a fine mesh (800 x 200 elements). 

The thickness and the orientation of the shear bands are shown in Figures 7 (a) and (b) 

respectively. The band orientation remains 4.5 degrees for a fine mesh, but increases to 5.2 

degrees for a coarse mesh. The width of the shear bands depends strongly on the mesh size. 

The widths of the inclined shear bands are equal to 0.11, 0.14 and 0.22 for the fine, reference 
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and coarse meshes respectively. The persistent shear bands extend over two elements. The 

stress-strain curves are compared to that of the reference mesh in Figure 7 (c). The results 

obtained from this mesh sensitivity study are in agreement with the properties of a so-called 

local model and highlight the numerical difficulties encountered when using this kind of 

model. Moreover in this study we focus on the orientation of the inclined shear bands. The 

orientations observed in our study range from around 3 to 8 degrees so that the selected 

structured mesh does not affect the band orientation by mesh alignment.  

In the following sections, we focus on the inclined shear bands. We investigate the 

influence of the value of the cut-off viscosity and dimensions of the computational domain on 

band orientation.  

4.3 Influence of the cut-off viscosity 

Vermeer [11] suggests that the band angle observed in numerical simulations based on 

elastic – plastic material behaviour is related to the capability of the material to unload, an 

effect which is beyond the scope of a linear instability analysis. In order to explore the 

relevance1 of Vermeer’s assertion in the context of viscous – plastic behaviour we perform a 

sensitivity study with respect to the cut-off viscosity. Note that the viscosity of the weak zone 

is kept 100 times smaller than the cut-off viscosity and that we restrict our study to cut-off 

viscosity values high enough to represent a rigid plastic material.  

We consider two values for the cut-off viscosity : 600 and 1200. For these values, the 

equivalent shear strain at bifurcation is bif  = 0.092 and 0.1, respectively, compared to 

bif  = 0.092 observed in the simulation with  = 800 (Table 1). Therefore, in both simulations, 

                                                 

1 Elastic and plastic strain rates do not share the same principal axes whereas viscous and plastic strain 

rates do. 
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the analytical value of the intermediate angle is about 8.4 degrees. Figure 8 (a-b) shows an 

orientation of 4.7 and 4.5 degrees for simulations with = 600 and 1200, respectively.  

Given these observations we may conclude that for rigid plastic material the exact 

value of the cut-off viscosity does not significantly influence the strain at the onset of 

bifurcation, nor the orientation of the inclined shear bands.  

4.4 Influence of the height of the domain 

The geometry parameter h corresponding to the height of the domain does not occur in the 

linear stability analysis firstly, because of the absence of an internal length scale and, 

secondly, because the boundary conditions at the intersection of the shear band/layer surface 

at hx 2  are ignored. Therefore the bifurcation condition (Eq. 20) is independent of h. 

However according to Tatsuoka et al. [12] and Desrues et al. [13], the orientation of shear 

bands may depend on the size of the specimen: the higher the specimen, the steeper the shear 

band. The aim of this subsection is to investigate the influence of the layer height h on the 

bifurcation strain and the band orientation.  

In the simulations with dimensionless heights 0.5, 1, 2, 4, the equivalent shear strains 

at the onset of bifurcation are 0.08, 0.092, 0.112, 0.128 and the intermediate angles are 7.9, 

8.3, 8.7, 8.9 degrees respectively. We observe the orientation of the shear band: as height 

increases, the orientation angle also increases: 2.8, 4.5, 6, 8 degrees (Fig. 6). The difference in 

the orientations cannot be explained by the difference in the intermediate angles. According to 

these results, the height of the domain controls the orientation of the inclined shear bands. 

This suggests that the geometrical conditions act as a filter for the infinite number of 

admissible orientations mentioned in the analytical study. This filtering can be explained as 

the result of the rigid plastic conditions studied here. Indeed this behaviour permits very small 

deformations in the unloading zone. 
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4.5 Influence of the width of the domain 

Given the periodic boundary conditions, we do not expect that the width of the domain can 

influence the shear band patterns. However, we performed an additional simulation with a 

width equal to 10. Inclined shear bands appear at the same bifurcation shear strain (bif = 0.092) 

and with the same orientation (4.5 degrees) as that observed in the simulation with the 

reference parameters. Therefore the width of the shear layer does not influence the orientation 

of the inclined shear bands if periodic boundary conditions are assumed. 

4.6 Discussion 

In this section, we investigated the bifurcation problem from a numerical point of view. We 

focussed on inclined shear bands formed in the hardening regime. In addition to Equation (20), 

further constraints such as influences from the boundary conditions and geometry parameters 

have to be considered to explain the exact morphology of the shear bands. It has been 

observed that the height of the domain has a significant influence on the band orientation, 

probably due to the rigid plastic behaviour of the material.  

5. Simulations with internal length (Cosserat effects) 

In this section, we extend our numerical investigation to an internal length scale R. We 

describe briefly the numerical scheme used to solve the non linear problem and then present a 

sensitivity study with respect to the internal length R.  

5.1 Computational aspects 

The numerical procedure for the Cosserat model mostly follows the one for the standard 

continuum outlined in Subsection 4.1. In the following we emphasize the differences between 

the approaches. Figure 2 represents the computational domain as well as the boundary 
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conditions and Table 1 summarises the parameter values assumed. We couple the momentum 

(velocity problem) and angular momentum equations (spin problem) iteratively. We start with 

03 cW . In each iteration, first we solve the velocity problem and update the pressure 

according to the penalty method, then solve the spin problem. We obtain an update for cW3 . 

An outline of the procedure including the steps resulting from the iterative penalty method is 

represented in Figure 9.  

As explained previously, we introduce a weak zone, that is, an imperfection with a 

cut-off viscosity 100 times smaller than the viscosity in the surrounding domain. Note that the 

Cosserat viscosity is also reduced since it depends on the cut-off viscosity according to 

2a
c


  .  

5.2 Results 

In the following, we focus on the sensitivity of the numerical solution with respect to R, since 

R is the key additional parameter introduced by the Cosserat theory. According to Mühlhaus 

and Vardoulakis [24], the width of the shear bands depends linearly on the parameter R. 

Simulations with different values of R are performed. From them, three main observations 

arise: (1) in all the simulations we observe a progressive unloading from the top to the bottom 

of the domain, (2) during this unloading inclined shear bands form within the unloading zone 

in the simulations with R ≤ 0.005 (Fig. 10) and (3) we observe a persistent horizontal shear 

band at the bottom of the domain, whereas inclined shear bands are not observed.  

Figure 11 shows the width of the persistent horizontal shear band as a function of the 

parameter R. For values of R between 0.004 and 0.05, the relation is linear, which is in 

agreement with the conclusions of Mühlhaus and Vardoulakis [24], whereas for values of R 

smaller than 0.004, the linearity is not preserved. In fact, for 0R , we would expect the 
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band thickness to reduce to the width of two elements (as observed for standard continuum), 

which is 0.02 in the present case. Instead we observe a wider band width of approximately 

0.06. This discrepancy is a consequence of our choice of interpolation functions for the 

Cosserat spin cW3  and the velocities from 0C  continuous bilinear functions. This choice 

causes a bending effect dependent on the mesh size as shown in Appendix 1. The results 

obtained from a simulation with a fine mesh (800 x 200 elements) are denoted by a dashed 

line in Figure 11. For values of R higher than 0.05, boundary effects appear. Indeed an 

additional simulation with h = 2 and R=0.08 is performed and the width of the shear band is 

denoted by dashed line in Figure 11. This result agrees with the linear relation observed for 

values of R inferior to 0.05. Figures 12 and 13 represent for different values of R the velocity 

profile and the stress-strain curve, respectively. Note that for R = 0.05 the location (x1 = 0.2; 

x2 = 0.5) at which the equivalent shear strain and the shear stress are observed is inside the 

shear band.  

The inclined shear bands (R ≤ 0.005) form at the first increment at which unloading 

occurs and disappear after around 5 steps. The larger the parameter R, the thicker the inclined 

shear bands. The orientation is around 4.2 degrees for all R ≤ 0.005 (with variations smaller 

than the measurement error). These observations may be interpreted as a smooth transition 

between a standard continuum (R = 0) and a Cosserat continuum (R > 0).  

6. Conclusion 

In this paper, a bifurcation problem was investigated analytically and numerically within the 

framework of a standard as well as a Cosserat continuum. We considered a rigid plastic 

frictional material in simple shear. More specifically the constitutive model is based on co-

axial flow rule, incompressible deformations and a friction factor which depends on the strain 

history.  
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The analytical study consisted of two linear stability analyses. The search for 

hyperbolic solutions led to three main conclusions: (1) the three values given in literature (the 

Roscoe, Coulomb and intermediate angles) are obtained as special cases from the 

transcendental condition (Eq. 20), (2) for a standard continuum, bifurcation is permitted in the 

hardening regime at any value of the accumulated equivalent plastic strain and (3) it occurs at 

a strain lower than that observed in the Cosserat theory.  

For a standard continuum, the simulations show three stages: the quasi-homogeneous 

state, then the emergence of inclined temporary shear bands whose orientations are between 

the Roscoe and Coulomb angles, and finally the onset of a persistent horizontal shear band. 

The width of the shear bands depends strongly on the mesh size, as expected. The sensitivity 

study shows that the parameter with the most influence on the orientation of the inclined shear 

bands is the height of the sample. As height increases, the orientation angle also increases. For 

a Cosserat material we observed a progressive unloading from top to bottom. During this 

unloading and for R ≤ 0.005, the unloaded zone is crossed by inclined shear bands. As 

expected, the width of the persistent shear bands is linear with respect to the internal length R.  

By considering analytical and numerical approaches, this paper highlighted the 

limitations of the analytical study as well as the additional geometrical constraints introduced 

in the simulations such as the height of the domain and the boundary conditions. The linear 

stability analysis leads to an infinite number of admissible orientations in the hardening 

regime. However the “numerical filter” keeps only the most stable solution in terms of the 

chosen convergence criterion. Under these conditions and for the rigid plastic frictional 

material studied here, the numerical solution is mainly controlled by geometrical conditions.  
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Appendix 

For sake of simplicity, we assume a homogeneous linear elastic material in simple shear (see 

Fig. 2). The problem is treated as a one dimensional problem. Considering the x1-invariance 

of the problem, the constitutive relationships are: 
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where G and Gc are the shear modulus and the Cosserat shear modulus respectively, u the 

displacement vector and c the Cosserat rotation. The other notations are defined as done in 

the main part of the paper.  

We assume linear interpolation functions for the displacements and the Cosserat 

rotation: 
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where the superscripts i and j denote the nodes of a linear element and ij xxx 222   its length.  

Within the framework of the Cosserat theory, the internal virtual work of a linear 

element reads: 
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where 
2

,, ijji

ij

uu 
 , 

2

,, ijji

ij

uu 
  and 

c

jiijk ,   are the components of the virtual strain 
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tensor, of the virtual macro-curvature tensor and of the virtual micro-curvature tensor 

respectively.  

Substituting of (A.2) into (A.3) yields:  
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Noting that the integration of odd functions evaluates to zero, the virtual internal work can be 

re-written as: 
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Equation (A.5) shows a bending term which depends not only on the internal length R and but 

also on the mesh size x2.  
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Figures 

 

Figure 1: Evolution of the mobilised factor of friction  as a function of the equivalent shear 

strain 

 

 

 

Figure 2: Rectangular specimen in simple shear. 



32 

 

 

Figure 3: Bifurcation condition within the framework of standard mechanics for different 

values of the equivalent shear strain (see Eq. 20). 

 

 

Figure 4a: Three stages during the simulation with the reference parameters highlighted in the 

stress-strain curve. 
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Figure 4b: Stage 1: quasi-homogeneous state. 

 

 

Figure 4c: Stage 2: inclined shear bands with two shear bands at the bottom and at the top of 

the domain. 

 

 

Figure 4d: Stage 3: persistent horizontal shear band at the bottom of the domain. 
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Figure 5: Velocity profile along a cross section for the three different stages observed during 

the simulation with the reference parameters. 

 

 

Figure 6: Bifurcation point for different values of h in the space 
2,1v


  . 
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Figure 7a: For a coarse mesh (200 x 50 elements): band orientation and thickness. 

 

 

Figure 7b: For a fine mesh (800 x 200 elements): band orientation and thickness. 
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Figure 7c: Stress-strain curves for a fine mesh (800 x 200 elements) and a coarse mesh (200 x 

50 elements). 

 

 

Figure 8a: Band orientation for  = 600. 
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Figure 8b: Band orientation for  = 1200. 

 

 

Figure 9: Flow chart of the procedure for Cosserat plasticity. 
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Figure 10: Distribution of the equivalent shear strain rate showing inclined shear bands for 

R = 0.001. 

 

 

Figure 11: Representation of the width of the horizontal shear band as a function of the 

parameter R. 
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Figure 12: Final velocity profile for different values of R. 

 

 

Figure 13: Stress-strain curve for different values of R. 
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Dimensions: width x height 4 x 1 

Mesh (number of elements): horizontally x vertically 400 x 100 

Dimensions of the weak zone: width x height 0.04 x 0.04 

Coordinates of the centre of the weak zone x1 = 2 ; y1 = 0.02 

Background viscosity  800 

Background viscosity of the weak zone w 8 

Hardening parameters 0 = 0.1; ∞ = 0.245; n = 7 

a1 (for Cosserat only) 

a2 (for Cosserat only) 

a3 (for Cosserat only) 

Table 1. Reference parameters. Note that the problem is dimensionless.  

 


