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Abstract

The ultimate goal of this paper is to propose a procedure for the optimal de-
sign of a Vibro-Impact (VI) Nonlinear Energy Sink (NES) to control the vibration
of any possible linear or nonlinear main systems. To this end, the activation char-
acteristic of VI NES at a range of displacement amplitude of a main system is
generalized from linear systems to nonlinear systems. It is theoretically proved
and experimentally observed that this activation characteristic is almost indepen-
dent of frequency, which provides direct proof for the effectiveness of VI NES in
a broad frequency bandwidth. In terms of vibration control, this feature is very
attractive and builds a bridge between linear and nonlinear systems. Then it is
applied for the design of VI NES attached to nonlinear systems. In this way, the
design of VI NES for a nonlinear system is simplified to the optimal design for
a linear system, which is designed to be similar to this target nonlinear system.
Because the latter can be analytically calculated, the proposed method is feasi-
ble from a quantitative perspective. Finally, this activation characteristic and a
proposed design method are applied to control chatter in a turning process, and
results prove its feasibility.

Keywords: Vibro-impact, Optimal design, Activation, Nonlinear system,
Targeted energy transfer, Nonlinear energy sink, Impact damper

∗Corresponding author
Email addresses: tli@insa-toulouse.fr (T. Li), qiu@insa-toulouse.fr (D. Qiu),

sebastien.seguy@insa-toulouse.fr (S. Seguy), alain.berlioz@univ-tlse3.fr (A.
Berlioz)

Preprint submitted to Journal of Sound and Vibration April 11, 2017

http://ees.elsevier.com/jsv/download.aspx?id=1146781&guid=6eeaf088-27d8-41b2-befe-c482a3ba49b4&scheme=1
http://ees.elsevier.com/jsv/viewRCResults.aspx?pdf=1&docID=29682&rev=1&fileID=1146781&msid={40C54662-B3DF-4AFF-B145-5C34DFA41741}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1. Introduction

In engineering, clearance is common for structures such as linkage, gear train
and joint. Impacts come into being when two objects contact, and can result in
energy transfer and dissipation. This phenomenon is applied to vibration control
since seventy years ago [1] and an auxiliary device is termed as impact damper.
Later, there are extensive studies around impact damper and its dynamics as a
typical vibro-impact system [2, 3]. The focus here is put on some recent studies
since they are tightly related to the work of this paper.

Recently, impact damper is re-examined under the context of Targeted En-
ergy Transfer (TET) [4, 5] and called Vibro-Impact (VI) Nonlinear Energy Sink
(NES) [6, 7, 8]. The main advance comes from the analytical study of underlying
Hamiltonian system [9] and the application of multiple scales method [10]. Con-
sequently, special orbits that lead to TET are found from the former, and a Slow
Invariant Manifold (SIM) that controls the variation of resonance captures are ob-
tained from the latter. Some following analytical and numerical studies reveal
further information about the complicated dynamics of this VI system, especially
Strongly Modulated Response (SMR) [11, 12] and bifurcation analysis from the
perspective of impact time difference [13].

In addition to the explanation of its dynamics, there are also many researches
about its characteristic as a damper. In general, two aspects of study results are
obtained [8, 9], namely activation characteristic and parameter optimization. In
terms of activation, VI NES is observed to respond fast at an initial stage when a
main system is perturbed, and it is effective in a broad frequency range from the
results of frequency spectrum analysis. With respect to parameter design, many
suggestions are proposed, for example a medium clearance is better. Around these
two aspects, it is found that the impact number per cycle of a main system matters
for energy transfer and dissipation [14]. Then, the efficiency of different response
regimes with different impact number per cycle is compared in [15], and it is
found that the limit between response with permanent two impacts per cycle and
that with intermittent two impacts per cycle (SMR) is optimal. Its essence behind
is transient resonance captures with two impacts per cycle. This conclusion also
holds for a linear system coupled with two VI NES in parallel [16]. In [15], there
is another interesting phenomenon, just a range of clearance will be effective for
a fixed outside excitation. Equivalently, a fixed clearance will only be effective in
a displacement amplitude range of a main system [16].

This feature is very interesting in terms of vibration control and is very special
as a NES. In [17], this kind of characteristic is also tried to be designed for a
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nonlinear vibration absorber but in a general way. Its basic philosophy of design
can be reflected by the response regime with two impacts per cycle of systems
coupled with VI NES.

Whether this effective activation of VI NES only depends on the displacement
amplitude and has nothing to do with frequency? If the answer is positive, it could
be applied as a design criterion for VI NES to control the vibration of nonlinear
systems at some displacement levels. Its benefit is evident since it maybe impos-
sible to get reliable results from analytical studies of nonlinear systems coupled
with VI NES, and the above-mentioned idea may provide a feasible solution.

The difficulty of the application of NES to control vibration is already ob-
served. For example, VI NES is attached to a cutting tool to quench its chatter
in [18]. Experimental results demonstrate that an appropriately designed VI NES
can effectively reduce the vibration of a cutting tool. However, its analytical de-
velopment is based on a simplified equation and still has a distance to predict real
responses, which is the same case for a turning system coupled with a cubic NES
[19]. The problem is the same for a helicopter [20, 21]. Considering the difficulty
of analytical study for any nonlinear systems coupled with VI NES, the possibil-
ity to apply its activation characteristic and to simplify its design for nonlinear
systems will be explored.

The paper is organized as follows. In Section 2, a theoretical analysis for
the activation characteristic of VI NES is presented. In Section 3 and 4, this
activation characteristic is validated by numerical and experimental results from
different linear and nonlinear main systems, respectively. In Section 5, a design
procedure of VI NES is proposed and applied to control chatter in turning. Finally,
conclusion is addressed.

2. Analytical treatment

In essence, the analytical development here is similar to that of former studies
[10, 11, 14], but some important information of SIM is neglected and will be
further analyzed.

2.1. Analytical formulation
[Fig. 1 about here.]

A LO under periodic excitation and coupled with a VI NES is showed in Fig. 1.
Its motion between impacts is described by the following equation:
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ẍ+ ελ1ẋ+ x = εGsinΩτ + ε
2
λ1GΩcosΩτ

ε ÿ = 0
∀|x− y|< b

(1)

Parameters are expressed as follows:

ε =
m2

m1
, ω0

2 =
k1

m1
, f0 =

ω0

2π
, τ = ω0t,

λ1 =
c1

m2ω0
, Ω =

ω

ω0
, G =

F
ε

where x, m1, c1 and k1 are the displacement, mass, damping and stiffness
of LO, respectively. y and m2 represent displacement and mass of VI NES, re-
spectively. Dots denote differentiation with respect to dimensionless time τ . b
represents the clearance. xe (t) is the displacement imposed on the base by a
shaker. εGsinΩτ and ε2λ1GΩcosΩτ represent the force contribution of dis-
placement and that of velocity by outside excitation, respectively. The latter term
is conserved here to demonstrate its physical meaning and is neglected during the
following analysis because of its small magnitude.

When |x−y|= b, impacts occur. The relation between after and before impact
is obtained under the hypothesis of simplified shock theory and the condition of
momentum conservation:

x+ = x−, y+ = y−

ẋ++ ε ẏ+ = ẋ−+ ε ẏ−, ẋ+− ẏ+ =−r
(
ẋ−− ẏ−

)
,

for |x− y|= b

(2)

where r is the restitution coefficient, and the superscripts + and − indicate
the time immediately after and before impact. New variables representing the
displacement of the center of mass and the internal displacement of VI NES are
introduced:

v = x+ εy, w = x− y (3)

Substituting Eq. (3) into Eqs. (1) and (2), the equation between impacts in
barycentric coordinate is given as:
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v̈+ ελ1
v̇+ εẇ
1+ ε

+
v+ εw
1+ ε

= εGsinΩτ + ε
2
λ1GΩcosΩτ

ẅ+ ελ1
v̇+ εẇ
1+ ε

+
v+ εw
1+ ε

= εGsinΩτ + ε
2
λ1GΩcosΩτ

∀|w|< b

(4)

and the impact condition (2) is rewritten as:

v+ = v−, w+ = w−,

v̇+ = v̇−, ẇ+ =−rẇ−, for |w|= b
(5)

Multiple scales are introduced in the following form:

v(τ;ε) = v0(τ0,τ1, . . .)+ εv1(τ0,τ1, . . .)+ . . .

w(τ;ε) = w0(τ0,τ1, . . .)+ εw1(τ0,τ1, . . .)+ . . .

τk = ε
k
τ, k = 0,1, . . .

(6)

A detuning parameter (σ ) representing the nearness of the forcing frequency
Ω to the simplified natural frequency of LO is introduced:

Ω = 1+ εσ (7)

Substituting Eqs. (6) and (7) into Eqs. (4) and (5), equating coefficients of like
power of ε and only conserving the first two orders:

Order ε0:

D2
0v0 + v0 = 0

D2
0w0 + v0 = 0, ∀|w0|< b

(8)

v+0 = v−0 , w+
0 = w−0 ,

D0v+0 = D0v−0 , D0w+
0 =−rD0w−0 , for |w0|= b

(9)

Order ε1:

D2
0v1 + v1 =−2D0D1v0−λ1D0v0−w0 + v0

+Gsin(τ0 +στ1)
(10)

where D0 represents partial derivative to time τ0. For order ε1, only the term
related to LO is conserved and will be used later. Combining the first order and
the second one, both SIM and fixed points could be obtained. From the analysis
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of order ε0, v0 represents an ideal undamped harmonic oscillator expressed as
follows:

v0 =C(τ1)sin(τ0 +θ(τ1)) (11)

where C(τ1) and θ(τ1) are its amplitude and phase, respectively. From the
standpoint of w0, Eq. 8 and Eq. 9 represent a harmonically forced impact oscil-
lator with symmetric barrier. For the response regime (1 : 1 resonance) with two
impacts per cycle, its solution can be searched in the following form:

w0 =C(τ1)sin(τ0 +θ(τ1))+
2
π

B(τ1)Π(τ0 +η(τ1)) (12)

where B(τ1) and η(τ1) are displacement amplitude and phase of VI NES,
respectively. Π(z) is a non-smooth sawtooth function [22]. This folded function
and its derivative are depicted in Fig. 2 and expressed as follows:

[Fig. 2 about here.]

Π(z) = arcsin(sinz), M(z) =
dΠ

dz
= sgn(cosz) (13)

According to Eqs. (12) and (13), impact occurs at T0 = π/2−η + jπ with
j = 0,1,2, . . .. The impact condition |w0|= b is rewritten with Eq. (12) as:

C cos(η−θ) = b−B (14)

Rewriting now the inelastic impact condition Eq. (9) yields:

C (1+ r)sin(η−θ) =
2
π

B(1− r) (15)

Combining Eqs. (14) and (15), a relation between B and C is obtained as fol-
lows:

C2 =

(
1+

4(1− r)2

π2 (1+ r)2

)
B2−2bB+b2 (16)

An example of SIM described by Eq. (16) with b = 1 and r = 0.6 is presented
in Fig. 3. The stability of SIM is analyzed by an asymptotic approach used in
[11] that is originally applied in [23, 24]. By this stable analysis method, the sta-
ble branch is defined by the condition that the modulus of all the eigenvalues of

6
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a certain matrix relating two consecutive impacts is less than unity. This stabil-
ity analysis can also be accomplished by direct numerical integration of Eqs. (8)
and (9).

[Fig. 3 about here.]

In order to obtain fixed points or study the non-stationary evolution of the
motion of the system on the SIM, i.e., the analysis of transient resonance captures
under transient excitation and transient resonance captures of SMR, Eq. (10) at the
next order of approximation is analyzed. To identify terms that produce secular
terms, the function of w0 is expanded in Fourier series:

w0 =C(τ1)sin(τ0 +θ(τ1))+E (τ1)sin(τ0 +ζ (T1))

+RFC
(17)

where RFC represents the rest components in addition to the simplified natu-
ral frequency of LO. The component C (τ1) is decided by the motion of LO and
E (τ1) is totally related to the motion of VI NES. The value of E (τ1) is related
to the periodic impact force. The Eq. (17) is a more general and relaxed analyti-
cal description with respect to the motion of VI NES compared to former studies
[10, 11] that consider only 1:1 resonance with two symmetric impacts per cycle.

Substituting Eqs. (11), (12) and (17) into Eq. (10) and eliminating terms that
produce secular terms give:

D1C =−1
2

λ1C− 1
2

E sin(Θ)+
1
2

Gsin(η)

D1η =
1
2

Gcos(η)/C− 1
2

E cos(Θ)/C+σ

(18)

where
Θ = ζ −θ

η = στ1−θ
(19)

Θ represents the phase difference related to LO and VI NES. η represents the
phase difference related to LO and outside excitation.

The fixed points can be obtained by equating the left side of Eq. (18) to zero
and then combining it with Eq. (16). In this way, the fixed points (number and
position) can be obtained. Compared to the classic non-asymptotic method, the
functionality of this asymptotic method is twofold. Firstly, the position of points
can be used to judge the type of response regime. Secondly, values can be pre-
cisely calculated for 1:1 resonance, which is related to optimal response regime

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[15]. Meanwhile, the corresponding equivalent force E between LO and VI NES
can be used to analyze their underlying dynamic performance.

2.2. Analysis of SIM
For a fixed point in SIM as showed in Fig. 3, C and B represent the displace-

ment amplitude related to LO and VI NES, respectively. After a dimensionless
process, these two parameters remain the same. However, the frequency of LO
is normalized and the velocity of VI NES is also scaled. It means that one point
of SIM actually represents different response regimes which have the same ra-
tio between C and B but possess different frequencies. Different points of SIM
represent different responses with different ratios of displacement amplitude and
they together represent all possible response regimes. Here, one important point
that different systems coupled with a same VI NES can have the same SIM is ne-
glected during all former studies, because these former studies are carried out for
different systems case by case.

In [15], it is found that a VI NES with a specific clearance will only be effec-
tive in a range of displacement amplitude of LO. Actually, this is related to the
blue stable branch of SIM in Fig. 3. Theoretically, VI NES with a fixed clearance
should be activated at a fixed displacement amplitude interval for different LO
with different natural frequencies. Then, whether it still holds for nonlinear sys-
tems with varying frequency when its energy changes. If a considered nonlinear
system at different energy levels can be equivalent to different linear systems with
different frequencies, the above activation characteristic can still be used. The
essence behind is to find the activation condition of VI NES. In this way, the dif-
ficulty of analytical treatment of system coupled with VI NES during the design
process can be avoided.

To design VI NES for vibration control of a nonlinear system, actually it is
difficult to get the full information of this nonlinear system, let alone to treat this
coupled system analytically. However, its range of work displacement amplitude
is normally known in advance or can be obtained from a design objective. From
the above analysis, it is exactly what needed for the optimal or relatively optimal
design of VI NES.

2.3. A design procedure for VI NES coupled to nonlinear systems
For the design of a VI NES for the vibration control of a nonlinear system,

the idea is simple and just to find a similar linear system to this nonlinear system,
then to optimally design VI NES for this linear system. However, there are some
requirements to assure VI NES still works for target nonlinear system. Firstly and

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

at least, the amplitude of this linear system should be the same as that of nonlinear
system. Secondly and unnecessarily, the frequency of this linear system should
be designed the same as that of nonlinear system. If just a linear system is used to
approximate this nonlinear system working in a range of displacement amplitude,
usually only the amplitude range can be approximated by this linear system and
the condition with same frequency cannot be met. This requires a prerequisite that
VI NES will be activated at a range of amplitude and its activation is independent
of frequency. This point will be investigated in the following section.

As a summary, the activation of VI NES as a damper is special from two
perspectives. Firstly, a VI NES with a fixed clearance will only be effective in
a range of displacement amplitude. It means that different clearances will be
activated at different amplitudes of displacement as observed from experimental
transient excitation results [16]. This characteristic is very important in the do-
main of vibration control. The second characteristic is about its effectiveness in a
broad frequency range. Former observations are based on the frequency spectrum
analysis of a transient or periodic response, and this way is indirect. This time, its
theoretical base is well demonstrated from the analysis of SIM.

3. Numerical observations

To guarantee the above-mentioned design mechanism of VI NES for nonlin-
ear systems, several aspects about activation characteristics of VI NES will be
checked in this section. Firstly, critical points (i.e., p0, p1 and p2) of SIM should
have the same values for different linear or nonlinear systems with different fre-
quencies under some same conditions. For this purpose, three linear systems with
different natural frequencies and one Duffing system with cubic nonlinearity are
numerically studied. Moreover, whether an optimal clearance of VI NES for one
system is still optimal for other systems is investigated. Secondly, the proportional
activation of VI NES with different clearances is experimentally examined.

3.1. LO and Duffing systems
Eq. (1) is modified to Eq. (20) in order to include a cubic term described by α ,

and a proportional factor β is introduced to regulate linear stiffness. The variation
of β will be reflected in parameter λ1. For moments of impact, Eq. (2) still applies.
The meaning of other parameters is the same as those in the last section. Eqs. (20)
and (2) will be combined for numerical simulation, and the following parameters
are fixed except specially pointed out: ε = 0.84,r = 0.6.

9
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ẍ+ ελ1ẋ+ x+αx3 = εGsinΩτ + ε
2
λ1GΩcosΩτ

ε ÿ = 0
∀|x− y|< b

(20)

where

ω0
2 =

βk1

m1

3.2. Free vibration of LO with different natural frequencies
The following parameters and initial conditions are used: G = 0,α = 0,b =

0.05,x0 = 0.1, ẋ0 = 0,y0 = b, ẏ0 = 0. The following three values β are consec-
utively chosen: 1, 0.75 and 0.5. The objective is to create three different linear
systems.

The results are showed in Fig. 4. For β = 1, the displacement of LO and
relative displacement are displayed in Figs. 4 (a) and (b), respectively. Then,
two points and their values are marked out in Figs. 4 (c-d). They correspond
to special points p0 and p2 in Fig. 3. Because the transition from regime with
two asymmetric impacts per cycle to the symmetric case is difficult to distinguish,
only p0 and p2 are used in the following results. In Fig. 4(e), corresponding value
x of p0 and p2 for these three different β is compared. These two broken lines are
the line fitting of numerical results. It is observed that the value x is almost the
same for these three values of β .

[Fig. 4 about here.]

When parameters and initial conditions are fixed as: G = 0,β = 1,α = 0,x0 =
0.02, ẋ0 = 0,y0 = b, ẏ0 = 0, different values of b are chosen to compare its effi-
ciency for a same main system and b = 0.05 is found to be optimal. Then this
optimal value of b is applied to other systems with different β . The results are
demonstrated in Fig. 5. The time history of displacement for β = 1 is displayed
in Fig. 5(a) and x related to p2 is marked out. The comparison between three dif-
ferent β is showed in Fig. 5(b) . All three values are around 0.0052, which results
in almost the same decay inclination for these three systems.

[Fig. 5 about here.]

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3.3. Free vibration of different Duffing systems
For systems with cubic nonlinearity, the following parameters and initial con-

ditions are used: G = 0,α = 250000,β = 1,x0 = 0.02, ẋ0 = 0,y0 = b, ẏ0 = 0.
Different values of b are chosen to compare their efficiency. x related to p2 are
compared and showed in Fig. 6. It is observed that x for p2 is proportional to
b, and this characteristic will also be demonstrated in the following experimental
results.

[Fig. 6 about here.]

As a summary, it is numerically observed the proportional activation of VI
NES to different clearances and the independence of its activation to the frequency
of main systems.

4. Experimental observations

The objective of this section is to verify the activation of VI NES from different
experimental results under different excitations.

4.1. Periodic excitation
For periodic excitation, experiments for a LO coupled with a VI NES are the

same as these in [15], in which specific information about experimental configu-
ration and parameters can be found. Here, just the time history of displacement is
demonstrated for a single frequency excitation at the first place, and for a range of
frequency at the second place.

4.1.1. Single frequency excitation
The whole time histories of displacement of LO for three different b is showed

in Fig. 7 (a-c) , respectively. Judging from the time range 20−70 s, SMR occurs
at this stable area, and the point of minimal amplitude related to p2 is marked out
at the same time moment for all three of them. Its value denoted by Y is marked
out. The relation between different b and its corresponding minimal amplitude
is represented by blue circles in Fig. 7(d) and then is linearly interpolated. The
consistency between the red broken line and circles proves the proportional activa-
tion characteristic to some extent considering that the number of points is limited.
However, this activation feature could be further observed from other viewpoints.

[Fig. 7 about here.]
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4.1.2. Excitation with a band of frequency
To observe the proportional activation characteristic of VI NES, the amplitude

of LO related to the limit point p2 in SIM, i.e., the corresponding response regime
limit between SMR and two impacts per cycle, is recorded for different values of
b during the sweep process.

[Fig. 8 about here.]

The displacement amplitudes of LO are marked out for different b and showed
in Fig. 8(a) and (b). The shift of resonance peak between different experimental
results comes from the difference of the starting record time. The starting or end-
ing points of the regime with two impacts per cycle are marked out for different
b and their specific judgment requires the data of acceleration. This judgment
process will be demonstrated for the analysis of the following transient experi-
mental results. It should be pointed out here that these marked points are enough
to coarsely describe the difference caused by b, though it is difficult to accurately
locate these points. Moreover, these two points entering into and leaving from the
regime with two impacts per cycle is visible and distinguishable during the exper-
imental process. As has been done before, these points are fitted by a red broken
line as showed in Fig. 8(c). These points almost locate in a line and prove again
the proportional activation characteristic.

4.2. Transient excitation
The objective of transient experiments with different linear and nonlinear sys-

tems is to study whether the activation of VI NES is related to frequency.

4.2.1. Experimental configuration
[Fig. 9 about here.]

In addition to the above experimental results under periodic excitation, three
linear systems with different stiffness and one Duffing system are experimentally
studied under transient excitation. The objective here is to observe the dependence
of the activation behavior of VI NES on frequency. More specifically, it is to test
that a VI NES with a same clearance will be excited at a same displacement range
of a main system with different frequencies.

[Table 1 about here.]
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The same mass and damping of oscillator, same VI NES as showed in Fig. 9
will be used during the whole experimental process. Only the number of springs
is changed from 4 to 3 or 2, or even the direction of springs is changed to create
a Duffing system. The oscillator is installed to a cast iron bench, and its displace-
ment and acceleration are measured by an acceleration sensor and a displacement
sensor, respectively. The LO is detailed in Fig. 9(a) and its stiffness can be reg-
ulated by modifying the number of springs in its two sides. A detailed view of
the fixation of springs is displayed in Fig. 9(b), in which two springs are used. If
only one spring is used, this spring will be attached to middle holes. During the
experimental process, 4, 3 and 2 springs are consecutively applied. Their stiffness
can be calculated according to the value of 4 springs as showed in Table 1. The
device to regulate displacement is showed in Fig. 9(c) and the initial displacement
of LO is set to around 20 mm for all tests. An enlarged view of VI NES is demon-
strated in Fig. 9(d). Its initial location is random for all tests. The specific location
is not so important, since only the stable process will be considered. In addition,
the initial velocities of LO and VI NES are zero. A Duffing system is showed in
Fig. 9(e). It should be pointed out that only the stiffness is different for the above
four systems.

[Fig. 10 about here.]

4.2.2. Experimental results
The response for LO with 4 springs and b = 5 mm is demonstrated in Fig. 10

to illustrate the process to identify typical values related to two limit points p0
and p2. The first limit point is that between the regime with three impacts per
cycle and that with two impacts per cycle, and the second is the one between the
regime with two impacts per cycle and that with less than two impacts per cycle.
The displacement is showed in Fig. 10(a), the first limit is between two points:
the local maximum point A2 and minimum point A3. Similarly, the second limit
point is between two other points: the local maximum point B2 and minimum
point B3. The identification of these four points can be obtained from special
points at the time history of acceleration in Fig. 10(b) and this identification is
also used for the former periodic experimental results. Two periods are enlarged
and displayed in Fig. 10(c) and (d). Point A1 is the last impact of periods with
three impacts per cycle. Point B1 is the last impact of the regime with two impacts
per cycle. According to values of A1 and B1, special points A2, A3, B2 and B3
can be identified, and then corresponding displacement amplitudes of this main
oscillator can be obtained, as showed in Fig. 10(a).
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[Fig. 11 about here.]

For different main systems with same displacement amplitude, its energy is
bigger for a larger stiffness. For free vibration, there exist more oscillations during
the decay process for the case with larger stiffness. Therefore, it will be clearer
to see the transition process of different transient response regimes with a larger
stiffness for the same VI NES, since the transition process of transient response is
finer.

[Fig. 12 about here.]

Then, amplitudes related to these two limit points p0 and p2 for four differ-
ent main systems are compared and showed in Fig. 12. As showed in Fig. 12(a),
the first three values in the horizontal axis represent LO with 4, 3 and 2 springs,
respectively. The last value represents a Duffing system with 4 springs. The
meaning of the horizontal axis is the same for other three subfigures. Two clear-
ances b = 5 mm and 10 mm are chosen and results are showed in Fig. 12(a-b)
and Fig. 12(c-d), respectively. Broken lines are curve fittings of experimental data
to show its variation trend. In Fig. 12(a), the results are obtained from positive
amplitude of displacement, A2 and A3 illustrate the first and second limit points,
respectively. The values of x are almost the same compared to its absolute value,
which provides a direct proof that the activation characteristic of VI NES is inde-
pendent of frequency. A small increase of value with the decrease of the number
of springs is reasonable because the representation of transient responses by mea-
sured data becomes coarse with the decrease of stiffness. As for the comparison
between LO with 2 springs and Duffing system with 4 springs, the difference is
not significant because that their stiffness are close and other unclear factors like
friction may play a critical role in deciding this value.

The same conclusion can be obtained from the analysis of points A3 and B3
in the negative side of displacement as showed in Fig. 12(b). Moreover, results
showed in Fig. 12(c-d) for b = 10 mm also support the above analysis.

In summary, activation characteristic of VI NES is examined from experimen-
tal viewpoints, and there are some credible results for its proportional activation.
In addition, the dependence of its activation on frequency is explored by a tran-
sient experiment. Although there are some results credible to some extent, they
are not so ideal and it results from the fact that the frequency difference between
these four systems is not large enough, meanwhile limit points p0 and p2 can not
be truly accurately obtained for these four systems with low frequency.

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5. Design of VI NES for chatter control

In this section, a design procedure of VI NES based on its activation char-
acteristic will be applied to control the chatter of a cutting tool during a turning
process. A simplified model and corresponding experimental parameters in [18]
will be used. The application of VI NES has been experimentally observed to be
efficient in quenching an unstable cutting in this paper. It is demonstrated that
the bifurcation diagram is complex [25] and corresponding response regimes are
also complex. Two typical cases will be chosen to demonstrate this optimization
procedure. One case corresponds to an unstable cutting possessing a steady state
response as well as a stable cutting with zero amplitude. The other case corre-
sponds to an unstable cutting characterized by beating response.

5.1. Model of a cutting tool coupled with VI NES
[Fig. 13 about here.]

A simplified model of a cutting tool coupled with a VI NES is represented in
Fig. 13. The cutting tool is supposed to only vibrate in the feed direction and the
workpiece is considered rigid. The corresponding equation of motion between
impacts is written as follows:

m1ẍ+ c1ẋ+ k1x+ k2x3 = Fx

Fx = p(ρ1∆h1 +ρ2∆h2 +ρ3∆h3)

ε ÿ = 0
∀|x− y|< b

(21)

[Table 2 about here.]

Related parameters are expressed as follows:

ω0
2 =

k1

m1
, f1 =

ω0

2π
, µ1 =

c1

2m2ω0
(22)

where x, m1, c1, k1 and k3 are the displacement, mass, damping, coefficient of
linear stiffness and coefficient of cubic stiffness of the cutting tool, respectively.
y and m2 are displacement and mass of VI NES. Dots denote the differentiation
with respect to time t. ∆h is decided by the current displacement and the displace-
ment trajectory left by the last pass. b represents the clearance. When |x− y|= b,
impacts occur. The relation between after and before impact is obtained under the
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hypothesis of simplified shock theory and the condition of momentum conserva-
tion:

x+ = x−, y+ = y−

m1ẋ++m2ẏ+ = m1ẋ−+m2ẏ−,

ẋ+− ẏ+ =−r
(
ẋ−− ẏ−

)
,

for |x− y|= b

(23)

[Fig. 14 about here.]

5.2. Design of VI NES for different cases
Physical and cutting parameters are showed in Table 2. Only the cutting width

h0 and clearance b will be varied. At first, the system is not coupled with VI NES
and the cutting width is varied to see the bifurcation process. When h0 = 0.11
mm, a case with two fixed points is observed denoted as case 1 and another fixed
point with beating response is located with h0 = 0.16 mm and is denoted as case
2. The response regimes for these two cases without and with VI NES will be
demonstrated.

5.2.1. Case 1
For h0 = 0.11 mm, the following initial conditions are fixed and used: ẋ0 =

0,y0 = b, ẏ0 = 0. Only initial displacement x0 is changed. When x0 is chosen to
a large enough value such as 0.20 mm and 0.01 mm, x will be attracted to a same
steady state, which corresponds to an unstable cutting as showed in Fig. 14(a) and
(b), respectively. If the initial condition is small enough, the response will decay
to zero as displayed in Fig. 14(c).

To design b for VI NES, the analytical results in Section 2 will be used. At
first, a LO close to this cutting tool, i.e., with the same displacement amplitude,
is created. In addition, the corresponding LO will possess other same character-
istics as the cutting tool as many as possible. The frequency of outside excitation
for this created linear oscillator is fixed to the experimentally obtained frequency
f0 and its amplitude will be chosen in order that the displacement amplitude of
LO will be the same as that of the cutting tool. Then b is designed to make the
target displacement amplitude of LO locate in p2 of the corresponding SIM under
periodic excitation and in p1 for transient excitation. For the cutting tool, its final
steady state, i.e., a steady non-zero or zero amplitude, is applied to decide which
points will be chosen.
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[Fig. 15 about here.]

For the first two initial conditions, response of the cutting tool is periodic
and its amplitude is 5.41 ∗ 10−3 mm and b is chosen to p2. For the third initial
condition, response is transient and its displacement amplitude at the starting point
2.199 ∗ 10−3 mm is chosen to make it locate at p1. The effect with VI NES is
demonstrated in Fig. 15. For the first two initial conditions, the unstable state is
improved to a stable state and its vibration is completely controlled as showed in
Fig. 15(a-b). Meanwhile, its transient process of energy dissipation is accelerated.
This is the same case for the third initial condition as showed in Fig. 15(c).

5.2.2. Case 2
[Fig. 16 about here.]

Compared to case 1, a beating response occurs for h0 = 0.16 mm as repre-
sented by the blue curve in Fig. 16(a). Its amplitude of displacement is not steady.
If the relative maximal value of point T1 is chosen as the target to create LO, the
estimated amplitude will be high, and the response should be designed accord-
ing to p1 with a relative high clearance for VI NES. In return, it will be a little
small for the relative minimal value of point T2, the response should be designed
according to p2.

When the relative minimal value Y = 3.208∗10−3 mm of T2 is chosen, the p1
is used as the targeted point. The result is showed in Fig. 16(a) and the displace-
ment of the cutting tool in red curve is almost zero in this case. When the relative
maximal value Y = 1.14 ∗ 10−2 mm of point T1 is chosen with p2 as the target.
The result in red curve is showed in Fig. 16(c) and the displacement of cutting
tool is greater with this b. The displacement of VI NES y for these two designed
values are showed in Figs. 16(b) and (d), respectively. For the first value of b, VI
NES is much more activated at the beginning. Once vibration is decreased to a
little value, VI NES is no longer activated. For the second value in Fig. 16 (d),
VI NES is also activated, but its vibration is not reduced as the first value and VI
NES is just occasionally activated.

In summary, the design procedure proposed for VI NES is feasible and effec-
tive for unstable cuttings during turning process. It demonstrates the feasibility of
relatively optimal design of VI NES for vibration control of nonlinear systems.

6. Conclusion

IIn this paper, SIM obtained from analytical development of LO coupled with
VI NES is further analyzed. Activation characteristic of VI NES as a damper is
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analyzed from SIM and applied for design of VI NES. Then, activation character-
istic of VI NES is numerically and experimentally validated. Finally, a proposed
design procedure of VI NES is applied to control the chatter during a turning
process.

Although SIM has been greatly analyzed during the analytical treatment of
system coupled with VI NES, its relation to frequency is not clearly explained
before. It is found that VI NES with a clearance will be activated in a fixed range
of displacement amplitude of a main system. Moreover it will not be affected
by the frequency of this main system. Two highlights are obtained. Firstly, the
effectiveness of VI NES in a broad range of frequency of a main system can be
viewed from another direct viewpoint, namely analytical viewpoint, and this idea
is different from traditional perspectives. Secondly, each NES could possess its
own characteristic and need special attention.

The design procedure of VI NES for the chatter control of a turning process
is just applied to demonstrate the way to design VI NES for vibration control of
nonlinear systems. Therefore, this section appears short and needs further study
later.

In general, about the activation characteristic of VI NES obtained from analyt-
ical analysis, the experimental results are general credible and prove the analytical
results. But they are not so ideal, for example, when Duffing system is created, the
stiffness of cubic term is so week that a significant change of frequency to assure
comparison cannot be obviously observed.
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Table 1. Experimental parameters [15]

Physical Parameters
m1 4.7 kg c1 3.02 Ns/m
k1 11.47∗103 N/m m2 32 g
b 0−50 mm

Reduced Parameters
ε 0.76% λ1 1.91
f0 7.86 Hz
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Table 2. Simulation parameters for a cutting tool coupled with VI NES

Physical Parameters
m1 3.1 kg µ1 3%
f1 99.4 Hz m2 32 g
r 0.6

Cutting Parameters

p 0.1 mm ρ1 6109.6∗106 Nm−2

ρ2 −54141.6∗109 Nm−2 ρ3 203.769∗1012 Nm−2

s 1800 rpm

24



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

𝑐1 

𝑘1 

𝑥 𝑥𝑒=F sin(𝛺𝑡) 𝑦 

𝑚1 LO 

𝑏 𝑏 

ball 
𝑚2 

Fig. 1. Schema of a LO coupled with a VI NES under periodic excitation.
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Fig. 2. Representation of the non-smooth functions Π(z) in blue thick line and M(z) in black fine
line and red dotted line.
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p1
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Fig. 3. SIM of VI NES: one stable branch in blue thin line and two unstable branches in red thick
line with special points p0, p1 and p2.
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x

b

Fig. 4. Comparison of p0 and p2 for a LO with different natural frequencies: (a) the time history
of displacement x; (b) the time history of relative displacement w; (c) the judge of p0 and p1 from
w; (d) the judge of p2 from w; (e) x related to p0 and p2.

28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

t

(a) (b)

xx

Fig. 5. Application of an optimal b from one specific LO to two other linear systems with different
frequencies: (a) the time history of displacement of LO with β = 1; (b) x related to p2 for different
β .
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Fig. 6. x related to p2 and obtained from the response of a Duffing system with different b for VI
NES.
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Fig. 7. Proportional activation characteristic of VI NES reflected by p2 of SIM: (a) b = 32.5 mm;
(b) b = 35 mm; (c) b = 40 mm.
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Fig. 8. Proportional activation characteristic of VI NES reflected by p2 of SIM from sweep exper-
iment: (a) b = 10 mm, 15 mm, 20 mm and 25 mm; (b) b = 27.5 mm, 30 mm, 35 mm and 40 mm;
(c) linear relation between b and x.
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Accelerometer

Laser sensor

VI NES(ball)
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Fig. 9. Experimental setup: (a) linear systems with 4, 3 or 2 springs ; (b) the fixation of springs;
(c) the regulation device of initial displacement; (d) an enlarged view of VI NES; (e) the Duffing
system with 4 springs.
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Fig. 10. LO with 4 springs and b= 5 mm: (a) the time history of displacement; (b) the time history
of acceleration; (c) an enlarged view of the time history of acceleration around point A1; (d) an
enlarged view of the time history of acceleration around point B1.
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Fig. 11. Duffing system with 4 springs and b = 5 mm: (a) the time history of displacement; (b)
the time history of acceleration.
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Fig. 12. Amplitude of the main structure around points A2, A3, B2 and B3 for three linear systems
with 4, 3 and 2 springs and a Duffing system with four springs and these four systems are presented
by 1,2,3 and 4 in the horizontal axis, respectively: (a) A2 and B2 with b = 5 mm; (b) A3 and B3
with b = 5 mm; (c) A2 and B2 with b = 10 mm; (d) A3 and B3 with b = 10 mm.
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Fig. 13. Schema of a cutting tool system coupled with a VI NES.
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(a) (b) (c)

Fig. 14. Displacement of the cutting tool with different initial conditions for h0 = 0.11 mm without
VI NES: (a) x0 = 0.20 mm; (b) x0 = 0.01 mm; (c) x0 = 0.006 mm.
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t t t
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x x x

Fig. 15. Displacement of the cutting tool coupled with an effective VI NES for different initial
conditions at h0 = 0.11 mm: (a) x0 = 0.20 mm and b = 2.2880∗10−2 mm; (b) x0 = 0.01 mm and
and b = 2.2880∗10−2 mm; (c) x0 = 0.006 mm and b = 2.4604∗10−3 mm.
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Fig. 16. Response comparison of the cutting tool without and with VI NES for x0 = 0.08 mm
and h0 = 0.16 mm: (a) x and b = 1.3517 ∗ 10−2 mm; (b) y and b = 1.3517 ∗ 10−2 mm; (c) x and
b = 1.2632∗10−2 mm; (d) y and b = 1.2632∗10−2 mm.
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