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Determining both radial pressure distribution and 
torsional stiffness of involute spline couplings  

A. Barrot, M. Paredes and M. Sartor. 
INSA de Toulouse, LGMT, 137 Av. de Rangueil, 31077 Toulouse Cedex, France 
 
 
Abstract: 

In this paper an analytical method is used to investigate the distortions of involute 

spline teeth. The following hypotheses are adopted: that teeth geometry is in conformity with 

standardisation, dimensions are nominal (no defect), there is no friction and the load is a pure 

torsional torque. Teeth distortions due to bending, shear, compression and foundation rotation 

are analysed. As the load is distributed along the tooth height, the displacement calculation 

differs from the conventional approach used for gear teeth. Sliding over the contact surfaces is 

also considered as it emerged during the study that this phenomenon, that has not hitherto 

been taken into account, plays a significant role. A punch model is used to describe the radial 

distribution of the contact pressure. Ascribing an arbitrary value to the tilted angle between 

the two contacting flanks enables the pressure profile to be evaluated, from which calculation 

of teeth distortions can be arrived at so as finally to obtain a new estimation of the tilted angle. 

Thus displacements and the contact load can be determined together by iterating the 

calculation procedure until convergence. Torsional stiffness, which is one of the main 

parameters required to predict the torque distribution along the spline coupling, is evaluated 

from the various displacement components. The results derived from the proposed analytical 

method are compared with finite element results and show good correlation. 

Keywords: spline coupling, teeth stiffness, pressure distribution. 
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Notations: 

α Tilted angle in radians 

υ Poisson coefficient 

µ Modulus of rigidity 

χ Kolosov’s constant 

θ O’Donnell’s foundation deflection in radians 

θd, j Contact angle including tooth angle at node j in radians 

θf
e, θf

i Shaft and sleeve tooth foundation rotation in radians 

φglobal Global rotation of the teeth in radians 

φj Contact pressure angle at node j in radians 

φj Contact angle at node j in radians 

φp, j Contact load angularity with the force P in radians 

φp, j Contact load angularity with the pressure p(sj) in radians 

φt
e, φt

i Shaft and sleeve teeth angle at the neutral axis in radians 

a Half contact length on the curvilinear axis in m 

Ak Constant factor 

c Half contact length on the x axis in m 

cϕ Torsional stiffness per unit width (along z axis) in N/rad 

d Curvilinear length in m 

E Young’s modulus in Pa 

F Force applied on the contact surface per unit width in N/m 

G Shear modulus in Pa 

h’ Effective height in m 

hj
e, hj

i Shaft and sleeve tooth height at node j in m 
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,e i
inter, j inter, jh h  Shaft and sleeve tooth height at the middle of the segment j in m 

hp Shaft and sleeve tooth height at the pitch radius in m 

I j
e, Ij

i Shaft and sleeve tooth second moment of area at node j in m4 

kc
e, kc

i Shaft and sleeve corrective coefficients related to compression 

ks
e, ks

i Shaft and sleeve section modulus coefficients for shear 

k0 O’Donnell’s influence coefficient related to foundation rotation in N-1 

k0
e, k0

i Shaft and sleeve influence coefficient related to foundation rotation in N-1 

L Contact length on the axis x in m 

l j
e, lj

i Shaft and sleeve length on the axis x at node j in m 

,e i
inter, j inter, jl l  Shaft and sleeve length on the axis x at the middle of the segment j in m 

lsj Curvilinear distance on the contact at node j in m 

lp
e Distance between R and Rre in m 

lp
i Distance between R and Rri in m 

Mf
e, Mf

i Shaft and sleeve tooth foundation moment at node j per unit width in N 

N Number of teeth 

n Even number of segments 

P Circular pitch in m 

p(sj) Pressure distribution along the contact line, at node j in N/m2 

p(x) Pressure distribution along the axis x in N/m2 

pr
e, pr

i Shaft and sleeve radial pressure in N/m2 

R Pitch radius in m 

Rb Base radius in m 

Rext External radius of the sleeve in m 

R0, Ri Shaft and sleeve major radius in m 
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Rint Radius corresponding to the hole of the shaft in m 

Rj Radius at node j in m 

Rre, Rri Foundation radius of the shaft and the sleeve in m 

si Curvilinear coordinate at node j in m 

Sj
e, Sj

i Shaft and sleeve tooth section at node j in m2 

T Moment applied on the contact surface per unit width in N 

tb Circular tooth thickness at the base radius in m 

Text External torque per unit width in N 

, ,,e i
b j b ju u  Shaft and sleeve tooth bending deflection at node j in m 

uc
e, uc

i Shaft and sleeve tooth compression deflection in m 

, ,,e i
s j s ju u  Shaft and sleeve tooth shear deflection at node j in m 

vslid
e, vslid

i Shaft and sleeve radial displacement due to sliding in m 

uslid Orthoradial displacement due to sliding in m 

 

1. Introduction 

Involute spline couplings are commonly encountered in torque transmission lines. When 

they are used in high technology applications, especially in aero-engine equipment, the 

designers have to study their behaviour under load thoroughly in order to size them 

accurately. Various works [1-5] have shown that the axial load distribution on the teeth is 

non-uniform and therefore contradicts standardisation assumptions relating to spline coupling 

sizing. In order to estimate the risks of fretting, wear and bearing, good knowledge of the 

pressure distribution on the teeth flanks is needed. This pressure distribution is mainly 

governed by the torsional stiffness of the joint in the axial direction and by the teeth 

distortions in the radial direction. 
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Axial torque distribution received attention from Tatur [1]. His approach was 

developed for straight flank couplings as shown in Fig. 1a but can also be used for any kind of 

spline coupling. Tatur proposed to calculate the running torque m(z) transmitted from the 

sleeve to the shaft along the axial direction z from the following differential equation: 

= = [ - ]
e

i edT (z)
m(z) c (z) (z)

dz ϕ ϕ ϕ  

where 

- Te(z) is the shaft torque (for every z, the sum of Te(z) and Ti(z), the sleeve torque, being 

equal to the external torque Text), 

- cϕ is the torsional stiffness of the joint, considered as constant whatever the z value, 

- ϕi(z) and ϕe(z) are the twisting angles for the internal spline and external spline. 

m(z) is directly linked to the mean pressure acting at section z. It has been shown that this 

model leads to satisfactory results provided that the value assigned to the torsional stiffness cϕ 

is appropriate [2, 3]. 

A number of studies have been devoted to the evaluation of spline stiffness. Roger Ku 

[6, 7] developed an experimental method relating to a high-speed rotating machine spline 

coupling. The authors introduced dynamic coefficients, but did not propose a method to 

calculate the stiffness of the joint from their geometrical and material characteristics. An 

analytical method was developed by Marmol [8] to test rotor vibrations. He considered the 

shaft and sleeve teeth to behave like cantilever beams. The effects of bending, shear and 

compression were considered, and the rotation at the tooth foundation centre was also taken 

into account. But the proposed solution departs from reality since the contacts between sleeve 

and shaft were considered to be merely punctual. Another simplified analytical method was 
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developed by Hayashi [9] where teeth of external and internal splines were considered to have 

a rectangular shape and the only teeth deflection studied was bending.  

Tooth behaviour will vary according to whether the load is introduced as punctual or 

distributed. Models need to consider a radial pressure distribution to obtain more accurate 

results. In 1969, Tatur [1] posited a uniform radial pressure distribution while, in 1982, 

Volfson [4] assumed a parabolic distribution, but neither was able to validate their 

hypotheses. With modern hardware and software advances in finite element calculations, we 

can now predict pressure distribution in an appropriate manner. Adey [5] and Leen [10] have 

developed FE analyses with experimental validations illustrating that radial pressure 

distribution is far from being uniform and is actually close to that of the punch model. But FE 

approaches are relatively costly, with each new study requiring the development of an 

accurate FE model.  

The difficulty encountered by designers seeking to use Tatur’s model lies in the fact that 

the literature does not offer any general method to calculate at low cost a suitable value for 

spline stiffness cϕ and, in conjunction, a good prediction of radial pressure distribution that 

caters for the necessary relationships linking these two parameters.  

The present paper aims to create an analytical method dedicated to determining torsional 

stiffness of standard involute spline couplings as shown in Fig. 1b. This method seeks to 

consider the interdependence between teeth distortions and pressure distribution in its 

calculations. Firstly, the punch model selected to represent radial pressure distribution will be 

described. The general process leading to the calculation of torsional stiffness will then be 

introduced. Developments relating to the calculation of pressure distribution and the various 

teeth deflections will then be set forth in detail. Finally, to validate the analytical approach, 

the results thus obtained will be compared with FE results.  
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2. Choosing a model for teeth contact 

To understand the contact phenomenon in a spline coupling, Leen [10] developed an 

experiment similar to a punch test. The experimental measurements were compared on the 

one hand with FE results and on the other with the analytical model associated with the punch 

shown in Fig. 2a (Hanson [11, 12]). In spline couplings, the sleeve tooth can be considered to 

be the punch and the shaft tooth the plane, or vice versa. However, Hanson’s punch model 

considers a symmetric pressure distribution, whereas pressure distribution on a spline tooth is 

dissymmetric [10]. 

Various other works related to punch models were considered in the quest for a model 

capable of introducing a dissymmetric distribution. Sackfield [13] used a half plane 

formulation to analyse the pressure and slip of a tilted punch as shown in Fig. 2b-c. Unlike 

with Hanson, the punch load is a force and a torque with two configurations. In the first 

configuration, the load is centred on the punch and the contact is complete (as in Fig. 2b). In 

the second configuration, the load is off-centre, imposing a receding contact (as in Fig. 2c). 

The equation for pressure distribution p(x) along the contact surface in the complete contact 

configuration is 

K

1
= +

π A( ² - ²)

F
p(x) x

c x

α 
 
 

, 

where 

• F is the external force applied on the punch per unit width (along the z axis), 

• K

χ +1
A =

4µ
, with χ is Kolosov’s constant and µ the modulus of rigidity, 

• α is the tilted angle, 
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• c represents the half contact length, 

• x is a variable parameter, x ∈ [-c ; c]. 

The applied torque T is obtained by the equation 

K

² π
=

2 A

c
T

α
 ( 1 ) 

More recently Goryacheva [14] developed an analytical method for the inclined punch 

having a flat base and blend radii as shown in Fig. 2d.  

Finally, taking into account Leen’s study and the geometry of spline couplings, which 

does not present blend radii at the teeth ends, Sackfield’s model can be considered to be the 

most appropriate. The tilted angle α is the one formed by the two surfaces that are punching 

each other as shown in Fig. 3. α is linked to the global rotation of the sleeve related to the 

shaft, which is considered to be fixed. This rotation is the result of the shaft and sleeve teeth 

distortions. Consequently, the punch model cannot be applied immediately to the spline 

coupling and the various sources of teeth distortion need to be studied. 

 

3. Defining the main calculation process 

Fig. 4 describes the general process that will allow teeth distortions, radial pressure 

distribution and spline torsional stiffness to be obtained. This process starts with a loop 

structure including three different steps. The aim of this first part is to determine the value of 

the tilted angle α and, by so doing, distortions and pressure. Indeed, arbitrarily giving an 

initial value equal to zero to the tilted angle α makes it possible to develop a first calculation 

step where the pressure profile arising from this angle α can be evaluated using the Sackfield 

model. Knowing the distributed load acting on the contact surfaces, a second step is dedicated 

to teeth distortion calculation. Subsequently, a third step can then generate a new estimation 
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of the tilted angle from the displacements related to distortions. Thus, the required value of 

the tilted angle is determined by iterating this calculation procedure until convergence. The 

second part of the process is limited to evaluating torsional stiffness through knowledge of the 

various displacement components. All the steps in this process are described below in a more 

detailed manner. 

 

4. Calculating pressure distribution 

This section explains how to determine the radial pressure distribution considering the 

external torque Text and the tilted angle α to be known. Only study of the external spline is 

presented. Radial pressure at point P1 can be represented (P1 is the crossing point between the 

contact curve and the pitch diameter) by a torque T and a force F. Fig. 5 shows loading of the 

shaft. 

T can be obtained from equation (1). The equilibrium law applied to the external 

spline on the shaft section centre gives the resulting equivalent force F : 

1
= ( + )ext

b

T
F T

N R
 ( 2 ) 

where  

• Text is the torque per unit width applied on the shaft,  

• N is the number of teeth, 

• T is the torque per unit width applied by the sleeve to the shaft at the tooth contact 

surface, 

• Rb is the base radius of the spline. 

The Sackfield pressure distribution equation cannot be applied directly since the punch 

surface is considered to be planar while the tooth surface is curved. The linear variable x is 
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replaced by a curvilinear variable s. Furthermore, the tooth section is variable, hence the tooth 

is divided along its height into n segments as shown in Fig. 6 . Thus p(x), which becomes 

p(sj), is calculated for each sj, where j varies from 0 to n. 

 The pressure distribution expression becomes: 

K

1
= ( + )

π A( ² - ²)
j j

j

F
p(s ) s

a s

α
 ( 3 ) 

where a is the half length of the contact along the curvilinear axis and sj is the curvilinear 

coordinate
-1

=1

= -
j

j k
k

s ls α∑ . lsk is the curvilinear distance between the contact start radius Ri, and 

node k. During this calculation, the approximation that the tooth spline curve can be cut into a 

straight segment between two consecutive nodes is adopted. Hence the curvilinear distance lsk 

is given as 

2 2

1-
= +

2

e e
k k

k

h h L
ls

n
+   

   
  

 

where 

• L is the contact length in the x direction, = -o iL R R, 

where  

o 
( )-1

=
2 πi

P N
R , 

o = +
π

0 i

P
R R , 

• hk
e is the tooth height of the shaft at node k 

where 

o for k = 0, at the tooth base , = 2 πe re
0

R
h

N
, 
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o for k = 1 to n, ( )= 2 sine
k k d, kh R θ , 

where  

� θd, k is the contact angle including the tooth angle (Cornell [15]) 

( )= - tan -
2

b
d, k k k

b

t

R
θ φ φ , 

where 

• φk is the contact pressure angle =asin b
k

k

R

R
φ

 
 
 

, 

• tb is the circular tooth thickness at the base radius, 

� Rk is the radius at node k, = +
π

k i

k P
R R

n
 
 
 

. 

This step shows that α appears to be the key parameter required to solve the problem. 

This angle depends directly on the behaviour of the teeth, hence the next step involves 

determination of distortions. 

 

5. Calculating teeth distortions  

Since the teeth geometry of the external spline is close to that for spur gears, the 

literature has been analysed to take note of all phenomena addressed in spur gear teeth 

deformation studies. Terauchi [16] and Oda [17, 18] defined tooth stiffness in relation to two 

dimensional elasticity theory and a “mapping function”. This function allows an equation to 

be obtained that divides the tooth profile after deformation. This equation is based on 

Timoshenko’s work, which uses 14 variables. Among the studies encountered, Cornell’s 

appeared to provide the basis for several other works. Cornell [15] developed an analytical 

method allowing stiffness of the teeth to be found and compliance and stress sensitivity to be 
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determined. In this model, the distortions of teeth spur gears are due to bending, shear, 

compression and foundation rotation. Analysis of this last parameter is based on the work of 

O’Donnell [19, 20]. Huang [21] proposed an analytic dynamic analysis of a spur gear. 

Bending, shear, local compression due to the contact between spur gears, and foundation 

rotation are also considered to determine stiffness. Cornell’s [15] and Matusz’s [22] 

publications are referred to in order to calculate foundation rotation. More recently, Sainsot 

[23] used the theory of elasticity to model spur gear body distortion. In this publication, tooth 

stiffness is also based on Cornell’s theory. Experimental methods [24] or finite element 

investigations [25] addressed the question of evaluating teeth distortions. The results proposed 

in these papers were useful in validating the assumptions made in studies devoted to spur 

gears but cannot be used for spline coupling. Indeed, as the nature of the contact and the 

geometry of the internal tooth are different, the values for deformations too are necessarily 

different. 

Many of the numerical analyses carried out within the framework of the present study 

showed that the slip phenomenon that takes place at the contact surface has significant 

consequences. Indeed, the flank is inclined and pressure exerts radial forces that impose a 

compression of the shaft body and an expansion of the sleeve body. This generates orthoradial 

displacements, which can have a major influence. In order to obtain a good estimation of the 

teeth stiffness, sliding needs to be taken into account in stiffness calculation. 

Finally, according to these different works, teeth behaviour can be considered to be a 

superposition of four phenomena: 

1. bending and shear of the teeth, 

2. compression, 

3. tooth foundation rotation, 

4. sliding. 
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These various phenomena will now be described separately. 

5.1. Bending and shear of the teeth 

According to a number of papers, shear force and bending moment appear to be the 

principal effects on deflection of the teeth. These phenomena are based on stress analysis and 

can thus be expressed easily. 

Fig. 6 provides an illustration of the following explanations. The teeth on sleeve and 

shaft can be divided into two sections. The first, for the external spline, is between the shaft 

foundation radius Rre and the sleeve minor radius Ri, and that for the internal spline between 

the sleeve foundation radius Rri and the shaft major radius R0. On these parts, no loading is 

applied. The second is between Ri and R0, where contact is made. As shown in the pressure 

distribution formula, the geometry imposes a division of the tooth into segments. 

For shear and bending deflections, the teeth are considered to behave like cantilever 

beams. The shear deflection of the sleeve, ,
i
s ju , or of the shaft, ,

e
s ju , is the sum of the 

deflection on each segment of the tooth.  

Note: when a mathematical expression is identical for the shaft and the sleeve, the index ξ 

replaces indices “e” and “i”. 

The shear deflection expression at node j is 

,
=0

=
G

j
s k

s j k
k k

k V
u x

S

ξ ξ
ξ

ξ∑ , ( 4 ) 

where 

• Vk
ξ is the shearing force per unit width, the integral of the pressure along the 

contact surface between the fixed extremity and node k 
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2 2

=0 K

= asin - -
π A

k
qe

k q
q

sF
V a s

a

α  
  

  
∑ , and 

=i e
n-k kV V , 

• Sk
ξ is the surface area, where Vk

ξ is applied. As unit width is considered, this 

surface area depends of the tooth height before and after the segment, hk and hk+1. 

According to Cornell [15], calculating Sk
ξ using the following formulae improves 

accuracy 

1

+1

+1

2
= =2

1 1 +
k k+

k
k k

k k

h h
S

h h
h h

ξ ξ
ξ

ξ ξ

ξ ξ+
, 

where 

o hk
e is the shaft tooth height, already defined in the pressure distribution 

description. For the sleeve the height is  

� = 2π
i

i ri
0

R
h

N
 for k = 0 

� +1

π
= 2 sin -i

n-k j d,kh R
z

θ 
 
 

for k from 1 to n, 

• xk is the distance between the considered node k and the previous k - 1 in the x 

direction, 

• ks
ξ is the section modulus coefficient. 

The bending deflection of the sleeve and shaft, ,b juξ , at node j, is calculated using the 

second derivative of the bending moment 

( )''

=0

=
E

j
b,k

b, j
k k

M
u

I

ξ
ξ

ξ∑ , ( 5 ) 
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where 

• b,kM ξ  is the bending moment per unit width, which can be expressed by 

( )
=0 =

= - cos( ) - sin( )
E 2

k k
inter,qq

b,k inter,q o q q
o q o o

hf
M l l

I

ξξ
ξ ξ ξ ξ ξ

ξ θ θ
  
    

  
∑∑ , 

where 

o fq
ξ is the force per unit width applied on segment q 

+1 2 2 2 2
+1

K

= asin - asin - - - -
π A

q q
q q q

s sF
f a s a s

a a
ξ α                  

, 

o Io
ξ is the second moment of area expressed where the moment is applied. 

According to Cornell [15] and working per unit width, Io
ξ can be expressed 

( )
( )3 3

3 3

3

+1

+1

+1

2
= =

1 1 6 +

o o

o

o o

o o

h h
I

h h
h h

ξ ξ
ξ

ξ ξ

ξ ξ
+

, 

o lo
ξ is the distance between the foundation, the fixed tooth extremity and the 

point where the moment is applied in the x direction 

( )-1
= - +

-1o 0 i a

o
l R R l

n
ξ ξ , 

where 

• = -e
a i rel R R , 

• = -i
a ri 0l R R , 

o inter,ql ξ  is the distance between the foundation, the fixed tooth extremity, and 

the point where the force fq
ξ is applied in the x direction 

+1+

2
q q

inter,q

l l
l =

ξ ξ
ξ , 
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o inter,qhξ  is the height of the tooth, where the force fq
ξ is applied in the y 

direction 

+1+
=

2
q q

inter,q

h h
h

ξ ξ
ξ . 

To conclude, the deflection due to bending and shear is the sum of ,b juξ  and ,s juξ . To 

find the section modulus coefficients of the shear deflection, a confrontation between 

analytical results and finite elements was performed. Using FE analysis, it is impossible to 

separate the effects of bending and shear so the comparison must take both into account. The 

2D FE model used to determine these coefficients is given in section 8.1 (Fig. 10). 

Introducing the torque at the sleeve external diameter and clamping the shaft root diameter, it 

is possible to obtain the coefficient ks
e, the tooth foundation rotation being annihilated in such 

a configuration. Deflection is evaluated along the symmetry axis of the shaft tooth. An 

equivalent approach where the sleeve root diameter is clamped and the shaft internal diameter 

is loaded allows ks
i to be calculated. These evaluations were made for a large set of spline 

couplings (different pitches and different tooth numbers), and for various torques, leading 

always to the same value of the section modulus coefficients: ks
e = 0.94 and ks

i = 0.8. Fig. 7 

shows the results obtained with: P = 7.85mm, N = 18 teeth, Rext = 35mm, Rint = 2mm and T = 

7.2N, E = 207GPa and G = 80.1GPa. 

5.2. Teeth compression 

The compression equation derives from Marmol’s study. uc
ξ is the compression 

deflection on the contact at pitch diameter 

=
E cos( )

j j
c c

j

f h
u k

d

ξ ξ
ξ ξ

ξθ
, ( 6 ) 

where 

• j = n/2, 
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• kc
ξ is a corrective coefficient, 

• d is the curvilinear length, where fj
ξ is applied +1 -1-

=
2

j js s
d . 

To find the corrective coefficients of the compression deflection, a comparison 

between analytical results and finite elements was performed leading to kc
e = 0.531 and 

kc
i = 0.406. 

5.3. Foundation teeth rotation 

Distortion creates a foundation rotation. This phenomenon has been studied by a 

number of researchers, assuming different stress distributions. One of these studies was 

developed by O’Donnell [16, 17], who found a realistic solution based on a cubic distribution 

of stress. 

According to O’Donnell, the foundation deflection θ is valid only on the beam 

support, near the neutral axis. 

2 2

2

16.67(1-ν ) (1-ν - ν )
= +

π E E
fM V

h' h'
θ  

where 

• h’ is the effective height, which is equal to 1.5 times the beam height, 

• θ is the deflection of a cantilever due to the elasticity support, 

• V is the shear load at the support per unit width, 

• Mf is the torque at the support per unit width. 

It is then possible to apply this theory to the foundation rotation of the spline. The 

foundation rotation becomes: 

0
2

2(1-ν - ν )
= +

E
f j

f
jj

k M V

hh

ξ ξ ξ
ξ

ξξ
θ  with j = 0, ( 7 ) 
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where  

• Mf
ξ is the foundation moment per unit width for the shaft or the sleeve. This 

moment Mf
ξ is found by applying the equilibrium law to the shaft or the sleeve at 

the crossing point P2, between the mid-tooth height and the foundation diameter as 

shown in Fig. 5, 

 = (- sin + cos )-
2 p

p
f p, j p, j

h
M F l Tξ ξφ φ  with j = n/2, 

where 

o hp is the tooth height at the pitch radius. This is the same both for the sleeve 

and the shaft 

= sin( )
π

p d, j

P
h N θ , with j = n/2, 

o lp
ξ is the distance between the foundation radius and the pitch radius 

= -
p

e
rel R R  and  

= -
p

i
ril R R, 

o φp, j is the contact load angularity with pressure p(sj), φp,j = π - θd, j, 

• k0
ξ is the influence coefficient. The value given by O’Donnell, for a half plane 

support is  

2

216.67(1-ν )
=

π E
0k

h'
, 

This value is not available for the spline coupling. Comparisons between FE model 

results and analytical model results allow this influence coefficient for the shaft 

and the sleeve to be determined 

2

2

6(1-ν )
=
π E

e
0k

h'
 and 
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2

2

8(1-ν )
=
π E

i
0k

h'
. 

5.4. Sliding 

Sliding has never before been taken into account in determining spline coupling 

torsional stiffness. Sliding can be calculated using a comparison between this phenomenon 

and the radial compression / extension of a hollow shaft. Indeed, the radial component of the 

contact teeth pressure creates a body compression of the shaft and a body expansion of the 

sleeve as shown in Fig. 8. These new radial displacements lead to an orthoradial displacement 

along the contact surface of the teeth. 

To solve this problem, the shaft and the sleeve are considered to be a hollow shaft. For 

the external spline, the maximum radius is the foundation radius of the shaft teeth, Rre. For the 

internal spline, the minimum radius is the foundation radius of the sleeve teeth, Rri. The radial 

component of the contact pressure is distributed uniformly over the outside diameter for the 

shaft and inside diameter for the sleeve. For the shaft, the resulting equivalent pressure pr
e is 

sin( )
=

π
2 sin

N

p, je
r

re

F
p

R

φ
 
 
 

 with j = n/2, 

for the sleeve the resulting equivalent pressure pr
i is 

sin( )
=

2 sin
N

p, ji
r

ri

F
p

R

φ
π 
 
 

 with j = n/2. 

The radial displacement created by the sliding phenomenon is a superposition of shaft 

and sleeve displacements. From Lame’s equations, the shaft and sleeve radial displacements 

are 
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2 2
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R R
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( ) ( ) ( )( )2 2

2 2
= 1-υ + 1+υ

E -

i
i r ri
slid ri ext

ext ri

p R
v R R

R R
, 

where 

• Rext is the external radius of the sleeve, 

• Rint is the hole radius of the shaft. 

 

Finally these displacements create an orthoradial displacement at the pitch diameter 

( ) j

π
+2 (tan( )- )

= + tan +
4

j j
e i

slid slid slid
Nu v v

φ φ
φ
 
 
 
 
 

 with j = n/2. ( 8 ) 

 

6. Defining tilted angle 

The tilted angle is the angle between the contact surface of the sleeve and the shaft. 

For readier comprehension, the shaft and sleeve deformations are separated. 

One method to obtain the teeth rotations is to assume that the deflection of the contact 

line is the same at deflection of the neutral axis. Fig. 9a shows a tooth sleeve before and after 

loading. After distortion, the extremity points of the contact surface C and D become C’ and 

D’ and form a line ∆’ i. The angle between the line (CD) and the line ∆’ i is θt
i. Only the 

deflections determined on the neutral axis are taken into account in the θt
i determination 

+
= +

-

i i
s,n b,ni i

t f
i 0

u u

R R
θ θ . 
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Fig. 9b shows the shaft before and after loading. The deformation imposes a rotation 

θt
e, which is the rotation of the line ∆e 

+
= +

-

e e
s,n b,ne e

t f
i 0

u u

R R
θ θ . 

These rotations and the local distortion on the contact (sliding and compression) create 

a body rotation of the sleeve. This global rotation θglobal, that does not appear on the figures, 

transforms the line ∆’ i to ∆i. The expression of the global rotation is  

/2 /2 /2 /2

2π
= + + + + + + +

i e
f fi e i e i e

global slid c c s,n s,n b,n b,n i e
p p

u u u u u u u
l l P N

θ θ
θ

 
+  

 
. 

The tilted angle α is the angle between ∆e and ∆i. = -( + )e i
t t globalα θ θ θ . ( 9 ) 

 

7. Determining torsional stiffness  

All the parameters for torsional stiffness determination are defined. It is now possible 

to formulate precisely torsional stiffness cϕ as 

= ext

global

T
cϕ θ

 in [N/rad]. ( 10 ) 

 

8. Finite element modelling and results 

A comparison between analytical results and 2D FE results will now be given. The 

spline dimensions are standard and the sleeve external diameter is chosen to obtain a second 

moment of area bigger than the shaft’s. To scan different configurations, three different 

circular pitches, three teeth numbers and various outside torques are taken into account.  
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8.1. Description of finite element models 

In order to validate the study, two-dimensional plane strain finite element models were 

made of different involute spline couplings and Abaqus was used to perform calculation. The 

meshing used to model the two parts constitutive of the coupling, the shaft and sleeve, are 

shown in Fig. 10. The final model is the sum of these two parts. The boundary conditions are 

defined as follows: contact is specified on the teeth flanks (but no friction), nodes located on 

the shaft internal diameter are locked but their radial expansion is kept possible and torque is 

applied to the external edge of the sleeve. Cyclic symmetry conditions are used on the two 

lateral edges to simulate the behaviour of the complete spline coupling.  

8.2. Adequacy between analytical model and FE model: 

Fig. 11 shows the comparison between finite element results and analytical model 

results. The characteristics of the involute spline coupling considered in this example are: 

P = 3.93mm, N = 18 teeth, Rext = 17.5mm, Rint = 1mm, Text = 5N, E = 207GPa and 

G = 80.1GPa. 

The variations between both models are shown in Tab. 1, the reference for variations 

being the analytical model. The two nodes located at the ends of the contact edge are not 

considered in this comparison because the analytical pressure is theoretically equal to infinity 

when s = a or s = -a (See Eq. 3 and Fig. 11). Using FE models, such values would be 

approximated only by significantly refining the meshing. The average variation, calculated on 

the remaining contact length, which corresponds to 90% of the entire length, is 3%. The 

maximal variation is about 6%.  

The analytical model’s precision is then sufficient to consider that radial pressure 

distribution is correctly calculated. 
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Tab. 2 allows the analytical torsional stiffness and the FE results for different spline 

couplings to be compared, the characteristics of the material being the same as those of the 

model presented above. In this table, the finite element torsional stiffness is calculated by 

dividing the external torque by the difference between the rotations at the foundation radius of 

the sleeve and the shaft. The reference used to evaluate variations is the analytical model. 

Tab. 2 shows precision of the analytical model. Indeed precision on the torsional 

stiffness is greater than 93%.  

For the same couple of circular pitch and number of teeth, teeth stiffness is identical 

whatever the torque applied, this being normal and proving that the analytical model gives 

coherent results. 

The different phenomena involved in the problem do not have the same influence on 

stiffness or pressure distribution. The contributions made by the various phenomena on the 

torsional stiffness value for the spline coupling presented above in this section are: 

- 58% is due to sliding, 

- 29% is due to the combined effect of shear and bending, 

- 8% is due to compression, 

- 5% is due to foundation rotation. 

From these contributions it is now possible to analyse the influence of the different 

corrective coefficients used in the analytical model. Sliding was evaluated without using the 

corrective coefficient. ks
ξ shear and bending coefficients appeared to be stable during all the 

various tests carried out. Modelling of these three phenomena, which account for 87% of 

torsional stiffness, is thus extremely robust as it is not dependent on variations in corrections. 

The values provided above for kc
ξ compression coefficients and ko

ξ foundation rotation 

coefficients are average values. Indeed, these coefficients may vary slightly with the geometry 
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and the materials considered in the problem. But their minor variations have only a slight 

effect on the total value for stiffness since the phenomena concerned account for only 

approximately 13% of the total.  

A confrontation between the results given by the analytical model and the results 

given by 3D FE analyses was also conducted. These studies showed that good correlations are 

achieved between results, especially at the ends of the coupling that are the most critical 

zones. 

9. Conclusion 

Sackfield’s punch model was combined with more conventional teeth distortion 

analyses to evaluate analytically the pressure distribution taking place between the teeth of 

involute spline couplings. The field of validity of the proposed method is defined by the 

following assumptions: that teeth geometry is in conformity with standardisation, dimensions 

are nominal (no defect), there is no friction and the load is a pure torsional torque.  

Whereas previous studies have attempted to find formulae for teeth stiffness and 

pressure distribution separately, this paper takes both phenomena into account to manage their 

mutual influence. A new analytical method to define both spline torsional stiffness and radial 

pressure distribution is thus proposed. It considers different teeth distortions, due to bending, 

shear, compression, foundation rotation, and sliding at contact. 

The results obtained from the study are compared with 2D FE models. These 

confrontations show that a good estimation of teeth stiffness can be found analytically. They 

also prove that the phenomena have varying degrees of influence on the stiffness value. 

Sliding, which has until now never been taken into account, appears to be the most significant 

parameter in determining torsional stiffness and pressure distribution.  


