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Abstract. High-speed milling operations are often limited by regenerative vibrations. The aim of 

this paper is to analyze the effect of spindle speed variation on machine tool chatter in high-speed 

milling. The stability analysis of triangular and sinusoidal shape variations is made numerically 

with the semi-discretization method. Parametric studies show also the influence of the frequency 

and amplitude variation parameters. This modeling is validated experimentally by variable spindle 

speed cutting tests with a triangular shape. Stable and unstable tests are analyzed in term of 

amplitude vibration and surface roughness degradation. This work reveals that stability must be 

considered at period variation scale. It is also shown that spindle speed variation can be efficiently 

used to suppress chatter in the flip lobe area. 

Introduction 

The productivity of cutting processes is severely limited by vibrations that arise during the material 

removal process. One reason for such vibrations is the surface regeneration. The theory of 

regenerative machine tool chatter is based on the work of Tobias and Fishwick [1]. This knowledge 

initially dedicated to the turning process has been adapted to milling [2] and led to the development 

of the stability lobes theory. Since then several improved model and analysis techniques have been 

appeared including detailed analysis of the governing delay differential equation and time domain 

simulations, see, for example [3,4]. These models all use the so-called stability lobe diagrams, 

which allows to choose the spindle speed associated with the axial depth of cut with a chatter free 

machining. In many practical cases, the choice of the optimal speed is difficult because 

contradictory parameters interact with productivity [5]. 

 Another technique to reduce chatter vibrations is the spindle speed variation. As opposed to 

variable pitch cutters, spindle speed variation can effectively be used in a wider spindle speed 

range, since the frequency and the amplitude of the speed variation can easily be adjusted in CNC 

machines even during the machining process. In the 1970's, Takemura et al. [6] presented the first 

simple model to study the stability of variable speed machining; they predicted significant shift of 

the stability lobes to higher depth of cuts, but the experimental tests showed only small 

improvements. Sexton and Stone [7] developed a more realistic model, and they found some 

improvements in the stability properties for low spindle speeds. Moreover, they showed that the 

presence of transient vibrations may further reduce these gains. 

 The study of the stability for variable speed machining requires a special mathematical analysis 

to compute stability lobes. Tsao et al. [8] have developed a model taking the angular coordinates as 

variables instead of time. Insperger and Stépán [9] showed that the semi-discretization method can 

effectively be used for the stability analysis of turning at variable speed. They showed that the 

critical depths of cut can be increased for low speeds, but for the high-speed domain, no 



improvement was found. Recently, Zhang et al. [10] presents a systematic stability analysis of 

spindle speed variation based on a machining chatter model of non-linear delay differential 

equation. Experimental results were presented by Al-Regib et al. [11] showing gains on surface 

roughness for turning at low speed. 

 The modeling of variable speed milling is more complex than that of turning, since the speed 

variation frequency and the tooth passing frequency interact and the resulting system is typically 

quasi-periodic. Still, there are mathematical techniques to determine approximate dynamic 

properties. Sastry et al. [12] used Fourier expansion and applied the Floquet theory to derive 

stability lobe diagrams for face milling. They obtained some improvements for low spindle speeds. 

Recently, Zatarain et al [13] presented a general method in frequency domain to the problem, and 

show that varying spindle speed can effectively be used to chatter suppression. Another approach is 

to use time domain simulation [14] that makes it possible to obtain more detailed information like 

the amplitude of vibrations, the chip thickness or the cutting forces. Simulations were sometimes 

made at high speed, but to the best knowledge of the authors, experimental validations are only 

made at low spindle speed [11, 12, 13, 14, 15]. 

 In this paper, the stability of variable speed milling is analyzed in the high-speed domain, for 

spindle speeds corresponding to the first flip (period doubling). Theoretical stability predictions are 

obtained using the semi-discretization method based on [4], and the results are confirmed by 

experiments. 

Milling modeling 

 Variation of the spindle speed. In the literature, mostly sinusoidal, triangular or square-ware 

modulations are considered [16]. Here, the sinusoidal and the triangular variation shown in Fig. 1 

are compared and analyzed. Assume that the spindle speed variation is periodic at period Tv with a 

mean value N0 and an amplitude Na, that is,      0v aN t N t T N N S t    , where    vS t S t T   is 

the shape function. For a triangular modulation the shape function is defined as: 
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 Here, mod(t,T) denotes the modulo function, for example, mod(12, 5) = 2. For a sinusoidal 
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Fig. 1: Typical triangular and sinusoidal shape variation 

 

 In order to normalize amplitude and frequency variation, the well know, parameters RVA and 

RVF are introduced: 
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 RVA represents the amplitude ratio between the amplitude Na and the mean value N0, it is always 

less than 1. In order to have reasonable cutting conditions, its value was limited at 0.3. This 



represents a variation of 30% of the spindle speed. This represents also a variation of 30% of the 

feed by tooth due to the constant feed velocity. RVF is the ratio between the variation frequency fv 

and the average spindle frequency N0. It may be higher than 1. If RVF equal to 1, then the spindle 

makes one variation period during only one revolution of the tool. 

 Mechanical model. A schematic diagram of the milling process is shown in Fig. 2. The structure 

is assumed to be flexible in the x direction, while the feed is parallel to the y direction. 

 

 
Fig. 2: Mechanical model of the milling process 

 

 The dynamic model is given by the following equation: 

       xmx t cx t kx t F t   ,  (4) 

where m is the modal mass, c is the damping, k is the stiffness and  xF t  is the cutting force in the x 

direction. According to a linear cutting law, the x component of the force is given by: 
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where Ap is the axial depth of cut, j  is the angular position of the jth cutting edge and KT and KR 

are the specific tangential and radial cutting coefficients. The chip thickness is expressed by: 

         sin cosj j z j jh t g t f x t x t t        ,  (6) 

where the function  jg t  is a unit function, it is equal to 1 when the tooth j is cutting, otherwise it is 

equal to 0. Here, fz is the feed per tooth,  x t  is the current position of the tool and   x t t  is the 

position at the previous cut. The regenerative delay  t  is periodic in time due to the spindle speed 

variation. 

 Stability analysis. Stability of the milling process with variable spindle speed can be estimated 

theoretically via the analysis of the governing Eqs. (4), (5) and (6). According to the Floquet theory 

of delayed differential equations [4], an infinite dimensional operator   (monodromy operator) can 

be associated with the system that gives the connection between the current state of the cutter and 

the state one period earlier: 

   x t T x t  .  (7) 

 This period T is equal to the principal period of the system. Thus, for the milling model with 

spindle speed variation, the regenerative time delay   and the spindle modulation period Tv are 

periodic. We assume that the ratio of the modulation period Tv and the mean time delay  is a 

rational number, i.e., vqT p  with p and q being relative primes. Thus, the system is periodic at the 

principal period vqT T consequently, the Floquet theory of periodic DDEs can be applied. Note 

that if the ratio of Tv and   is not rational, then the system is quasi-periodic and the Floquet theory 

cannot be used. Stability properties are described by the eigenvalues of the monodromy operator. If 

all the characteristic multipliers are in modulus less than 1, then the system is asymptotically stable. 

Here, the semi-discretization method [4] is used. The basic point of this method is that they provide 

a finite dimensional matrix approximation of the monodromy operator and the eigenvalues of this 



matrix can be determined numerically. This method was validated by time domain simulation [17]. 

Selection of the optimal parameters 

 Optimal area. Stability lobe can be constructed by scanning the cutting conditions (spindle 

speed and axial depth of cut) for a couple of (RVA, RVF) parameters and for a given shape. Fig. 3 

presents the lobes for constant, triangular and sinusoidal spindle speed. 

 The critical depth of cut can be seen to be increased by speed variation for some ranges of 

spindle speeds, but for some other ranges, the critical depth of cut is less than that of the constant 

spindle speed. For example, a cutting process with an axial depth of cut of 1 mm and a spindle 

speed of 9100 rpm – that is unstable for constant spindle speed – can be stabilized by a speed 

variation. But globally, the critical depth of cut can be seen to be increased essentially in the area of 

the first flip lobe by spindle speed variation. 
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Fig. 3: Stability diagrams for variable speed milling with RVA = 0.3 and RVF = 0.003 

 

 Comparison of the shape variation. The effectiveness of the spindle speed variation is tested 

on a flip lobe area (N0 = 9100 rpm) with a triangular and sinusoidal shape variation.  

Fig. 4 shows a contour plot presenting the maximal depth of cut available without chatter for the 

amplitude (vertical axis) and frequency (horizontal axis) with an average spindle speed of 9100 

rpm. At constant speed, the maximal depth of cut is 0.5 mm. It can be seen that the triangular shape 

always increase the critical depth of cut Ap for any RVA and RVF values. For some domains, even 

Ap = 2.4 mm can be achieved that corresponds to 380% improvements. As mentioned earlier, the 

choice of the frequency and the amplitude variation is limited by the spindle dynamics. Within the 

range of variation, the maximum acceleration of the spindle is 100 rev/s2, i.e., 6000 rpm/s. 

Considering the limits of the dynamic spindle for the triangular shape, the optimal choice is to use 

low frequency modulation with high amplitude. Such a point is denoted by point D or E. 

 

 
Fig. 4: Parametric study for triangular and sinusoidal shape (N0 = 9100 rpm and Ae = 2 mm) 

 

 A similar plot is determined for a sinusoidal shape in Fig. 4. Like the triangular shape, the 

sinusoidal shape always increases the critical depth of cut. For some area, an improvements of 

500% can be achieved (Ap = 3 mm). In fact, for a same frequency and amplitude parameters, the 



sinusoidal shape is more effective than the triangular shape. But if we consider the limit of the 

spindle, the sinusoidal shape gives – for the machinist – only an improvement of 300%. In fact, the 

sinusoidal shape needs more acceleration than the triangular shape (see Fig. 1). For a given spindle 

dynamic, the sinusoidal shape allows no more improvements. 

 Surprisingly, a high frequency of variation, coupled with a low amplitude variation, produce a 

little gain. The most effective parameter is the amplitude variation. 

 Because triangular shape allows – for a given dynamic spindle – the maximal gain for the 

machinist, only this spindle speed variation was analyzed in the experimental part. 

Experimental work 

The machining tests were carried out on a high-speed milling center. The average feed by tooth is 

0.1 mm/tooth. The tool is an inserted mill with 3 teeth, 25 mm diameter without helix angle. The 

spindle speed rotation is managed by a sub-program using a synchronous function. 

 A removable part in aluminum alloy (2017A) is machined in contouring with a radial depth of 

cut (Ae) of 2 mm. Fig. 2 shows the experimental set-up of the single degree of freedom flexure, 

compliant in the x direction. The tool is considered infinitely rigid compared to the workpiece. The 

vibrations of the part were measured by a laser velocimeter.  

 Collected in Table 1, the dynamic characteristics of the system were determined by hammer 

impact test and the cutting force coefficients were determined in coherence with previous work [5].  

 

Table 1: Flexure modal parameters and cutting coefficients 

m [kg] f0 [Hz] ξ [%] KT [MPa] KR [MPa] 

1.637 222.5 0.50 700 140 

 

 Some special cases. Firstly, cutting tests were conducted at spindle speed of 9100 rpm with 

RVA = 0,005, RVF = 0,15 ( fv = 22,75 Hz) and a depth of cut of 1mm. This test uses the maximum 

acceleration of the spindle with high frequency variation and low amplitude. The results thus 

obtained are presented in Fig. 5. Test (A) refers to the variable speed machining, test (B) to the 

constant spindle speed machining (note that these cutting parameters are in the first flip lobe, see 

point B in Fig. 3). Based on the theoretical predictions, these two tests are unstable. 

 The displacement measured with and without spindle speed variation is the same. Moreover, 

these two unstable machining generates exactly the same poor surface roughness on the workpiece. 

For this unstable machining, chatter is clearly identified. 

 Both machining shows also the minor importance of the variation frequency, like simulation 

predicts. It is not necessary to change very fast the spindle speed, even with maximum acceleration, 

because this is not the most important parameter. 

 Then, other cutting tests were performed at spindle speed of 9100 rpm and depth of cut of 1 mm 

using variable spindle speed with RVA = 0.08, RVF = 0.0125 ( fv = 1.9 Hz). This variation 

corresponds to point C in Fig. 4. Based on the theoretical predictions, the critical depth of cut is 

about 0.8 mm, i.e., the process is unstable. 

 Fig. 6 shows the recorded displacement history and the surface roughness variation during the 

cutting process. After about two periods of speed variation, the amplitude of the displacement 

increases very strongly. The envelope curve of the vibrations is illustrated by dashed lines. This 

behaviour corresponds to the predicted instability. However, chatter does not appear suddenly – 

some time is needed for it fully develops. In the case of our cutting test, this time span is about 

0.7 s. If the duration of the machining process is less than this period, then large amplitude 

vibrations do not develop. In a sense, this case can be considered as "practically stable" machining, 

in spite of the fact that the process itself is globally unstable. If the duration of the machining 

process is longer, then chatter develops. 
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Fig. 5: Two machining unstable (Ap = 1 mm and N0 = 9100 rpm) 
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Fig. 6: Analysis of an unstable machining (Ap = 1 mm and N0 = 9100 rpm) 

 

 This effect can also be observed on the surface roughness of the workpiece. The left hand side of 

the machined profile, where the cutting was started, has a pitch of approximately 0.3 mm, with 

roughness of 1.6 μm. For an ideally symmetric tool, the pitch of the machined profile is equal to the 

feed per tooth. However, if the tool has a runout greater than the roughness of the surface, then it 

leaves only one mark per revolution. The tool used in the tests had a runout of 10 μm, the feed per 

tooth was 0.1 mm and the tool had 3 teeth, thus the pitch of the machined profile is expected to be 

approximately 0.3 mm for stable machining. In fact, the pitch varies slightly around 0.3 mm, since 

the constant feed velocity and the variable spindle speed produce a varying feed per tooth. As the 

tool passes over and chatter develops, the surface roughness gets worse and worse. By the end of 

the workpiece, the roughness increased to 13.9 μm. 

 Stabilization by spindle speed variation. Consider the unstable machining process with spindle 

speed of 9100 rpm and depth of cut of 1 mm. Spindle speed variation is applied according to point 

D in Fig. 4. The corresponding parameters are RVA = 0.2, RVF = 0.0046875 ( fv = 0.71 Hz). Based 

on the theoretical predictions, the critical depth of cut is about 2 mm, i.e., the system with variable 

spindle speed is predicted to be stable. In Fig. 7, test (D) refers to the variable speed machining and 

test (B), to the constant spindle speed machining. 

 During the test with variable spindle speed, no chatter was observed. The amplitude of the 

vibrations was less than 0.01 mm, the roughness was 1.75 μm and the pitch of the machined profile 

was 0.3. For a 3 fluted tool with runout of 10 μm and feed per tooth 0.1 mm, this corresponds to 

stable machining. These all refer to a stable cutting process.  
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Fig. 7: Chatter suppression by spindle speed variation (Ap = 1 mm and N0 = 9100 rpm) 

 

 For constant spindle speed, chatter was clearly identified. The amplitude of the vibrations was 

about 0.07 mm, the roughness was 3.7 μm and the pitch of the machined profile was 0.6 mm that 

refers to the period doubling chatter (see point B in Fig. 3). In these cases, identification of chatter 

was unambiguous, the pitches of the machined profiles were uniform all along the workpiece. 

Conclusions 

Variable spindle speed machining was studied for high-speed milling at around the first flip lobes. 

Stability properties were predicted using the semi-discretization method. Moreover different 

combinations of the amplitude and the frequency of the speed modulation were analyzed in order to 

find the optimal technique to suppress chatter. It was found that the stability properties can always 

be improved (i.e., the critical depth of cut can always be increased) by spindle speed variation 

within the unstable domain of the first flip lobe. Amplitude was also shown to have a greater effect 

on the stability of the process than frequency. In this way, for a given dynamic spindle, the 

triangular shape allows the maximal gain for the machinist. 

 Cutting tests were performed for certain spindle speeds in the flip domain in order to verify the 

theoretical predictions. The concept of stability for variable spindle speed machining was shown to 

differ slightly from than of constant spindle speed, since the principal period of the system is equal 

to the spindle variation period (or to its integer multiple) instead of the tooth passing period. If the 

machining process is unstable, but the development of chatter requires more time than the duration 

of the process, then it can be considered as "practically stable" machining. The stabilizing effect of 

spindle speed variation was clearly verified experimentally, a period doubling chatter was 

suppressed by applying a proper spindle speed variation. 
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