Suppression of period doubling chatter in high-speed milling by spindle speed variation
Abstract
Spindle speed variation is a well known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In the current paper, spindle speed variation is applied to the high speed milling process, at the spindle speeds where the constant speed cutting results in period doubling chatter. The stability analysis of triangular and sinusoidal shape variations is made numerically with the semi-discretization method. It is shown that the milling process can be stabilized by increasing the amplitude of the spindle speed variation, while the frequency of the variation has no significant effect on the dynamic behaviour. The results are validated by experiments. Based on the analysis of the machined workpieces, it is shown that the surface roughness can also be decreased by the spindle speed variation technique.
Origin | Files produced by the author(s) |
---|