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Abstract

This paper proposes the design criteria for optimally tuned Vibro-Impact (VI)
Nonlinear Energy Sink (NES) to control vibration under periodic and transient ex-
citation. Firstly, a generalized dimensionless model of a two degrees of freedom
(DOF) system comprising a harmonically excited linear oscillator (LO) strongly
coupled to a VI NES is investigated. Bifurcation analysis and efficiency of Tar-
geted Energy Transfer (TET) around the Slow Invariant Manifold (SIM) are stud-
ied with the variation of clearance. As a result, the optimal clearances for periodic
and transient excitation are calculated from two transition points of the SIM, re-
spectively. Then the procedure is extended to the case of multiple VI NESs in
parallel with the LO. Two principles of additivity and separate activities of VI
NESs are verified theoretically. Finally, experiments involving the whole system
embedded on an electrodynamic shaker are performed. The results show that the
design criteria can not only predict the efficient TET at resonance frequency, but
can also achieve an optimal performance in a range of frequencies. Furthermore,
the criteria can be straightforward for the application of multiple VI NESs, so as
to make VI NESs work robustly under different types of excitation.
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1. Introduction

Vibrating systems with clearance between the moving parts, such as linkages,
gear trains, pinned connections and joints, are frequently encountered in engineer-
ing fields. Impacts occur when the vibration amplitudes of some parts are greater
than the clearance, leading to high energy being transferred and dissipated in a
transient manner. This phenomenon is attractive for vibration control, and a cor-
responding device, called an impact damper, was developed in 1945 [1]. Over
the past decades, impact damper and its dynamics as a typical vibro-impact sys-
tem have been extensively studied [2, 3, 4] and it has been demonstrated that in a
range of frequencies, an impact damper can perform better efficiency than a clas-
sical damper. With this advantage, various applications of impact damper can be
found in turbine blades, machine tools and tall flexible structures [5, 6, 7].

Recently, impact damper has been re-examined from the viewpoint of Tar-
geted Energy Transfer (TET) [8, 9], and is then referred to as Vibro-Impact (VI)
Nonlinear Energy Sink (NES) [10, 11, 12]. In the present work, the mechanism of
TET is revealed by analytical study of underlying Hamiltonian system [13] and it
is observed that some special orbits in the frequency-energy plot are responsible
for the irreversible energy transfer from a primary system to an attached VI NES.
Inspired by the study of TET, a method of multiple scales originally used for NES
with cubic nonlinearity has been improved to explain the transient TET process
for a vibrating system with a VI NES [14]. Consequently, a Slow Invariant Man-
ifold (SIM) describing all possible fixed points and possible variation routes is
obtained [15, 16].

As far as design criteria of VI NES, there are two main research themes,
namely activation characteristic and parameter optimization. With respect to the
activation, it is experimentally found that VI NES with a fixed outside excitation is
activated in a fixed interval of clearance, and also a VI NES with a fixed clearance
is activated in a fixed interval of displacement amplitude of a linear primary sys-
tem [17]. Theoretically, the above two describe the same thing, namely VI NES
as a vibration absorber will only be effective in a range of some parameter, no
matter this parameter is displacement amplitude of the primary system, or ampli-
tude of the excitation, or energy. In [18], the activation characteristic of VI NES
generalized from linear systems to nonlinear systems is studied. It shows that the
activation characteristic is independent of frequency, so the design of a VI NES
for a nonlinear system can be simplified to the optimal design of a linear system.
In [19], this kind of design characteristic is explored for a nonlinear vibration ab-
sorber, but in a general way. The basic philosophy of this design is reflected in the
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relation of activation energy and clearance of VI NES.
In terms of parameter optimization, it is found that the regime with two im-

pacts per cycle plays an optimal role, no matter in permanent form or intermittent
form [20]. Based on this idea, a design procedure is proposed, which is similar in
essence to the case of a NES with cubic nonlinearity [21]. For periodic excitation,
the objective is to tune the response at the boundary between two symmetrical
impacts per cycle and Strongly Modulated Response (SMR). For transient excita-
tion, the target is to make the free response start at the regime with two impacts
per cycle and ensure that its duration is as long as possible. In [22], this optimal
mechanism is extended to a linear system coupled with two VI NES in paral-
lel. However, the optimal values of clearance are obtained by trial and errors in
[20, 22]. If the primary system and the excitation are changed, the clearance will
no longer be optimal. Thus, ways of ensuring the optimal response by precise
analytical calculation for the clearance need to be further studied.

Unlike NES with cubic nonlinearity, VI NES is capable of passively absorb-
ing and dissipating significant portions of the energy of a primary system, at suf-
ficiently fast time scales, which render it suitable for applications like seismic
mitigation [13]. However, for both the linear and nonlinear system, the activation
of VI NES is limited to a range of excitation. This means that a fixed clearance
will only be effective in a given range of displacement amplitudes of a primary
system. Using multiple VI NESs is an alternative way to improve the robustness
and the feasibility of this approach is proved in the case of multiple NESs with
cubic nonlinearity [23, 24]. In [22], two VI NESs, one with a medium clearance
and one with a small clearance, are proposed to be optimal for a given excitation,
and experimental results demonstrate their efficiency. Yet, how to adapt the de-
sign from a single VI NES to multiple VI NESs is still not clear, neither is the
corresponding calculation.

Therefore, the first objective of this paper is to provide a precise analytical
calculation of clearance for a single VI NES, and the second is to establish the
optimal design relation for passing from a single VI NES to multiple VI NESs,
so as to obtain VI NESs that work robustly under different systems and different
types of excitation. The paper is organized as follows. Section 2 and Section 3
present the asymptotic analysis of a single VI-NES and the optimal design criteria
to tune the clearance for periodic and transient excitation. In Section 4, targeted
energy transfer of multiple VI NESs in parallel is studied. In Section 5, details of
the experiments performed on the whole system embedded on an electrodynamic
shaker are presented. Finally, some conclusions are proposed.
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2. Asymptotic analysis of a single VI-NES

2.1. Dynamic modelling
The dynamic modelling presented here is based on [18] and [25]. The system

of a harmonically excited linear oscillator (LO) attached to a VI NES is illustrated
in Fig. 1. The objective here is to apply the asymptotic method used in the above
papers to deduce the generalized dimensionless model, so as to obtain the optimal
design criteria for a VI NES intended for any targeted primary system.

1k

1c

x y= sin( )ex G t

m
b

M

b

LO

Figure 1: Schematic of the dynamic system: a harmonically excited LO coupled with a VI NES

The system is excited by the base, and the equations of motion between im-
pacts are described as follows:

Mẍ+ c1ẋ+ k1x = k1xe + c1ẋe

mÿ = 0, ∀|x− y|< b
(1)

where x, M, c1 and k1 are the displacement, mass, damping and stiffness of the LO,
respectively. y and m are the displacement and mass of VI NES. b represents the
clearance, which can be adjusted by the length of cavity. The imposed harmonic
displacement xe is expressed as:

xe = Gcos(ωt) (2)

When |x− y| = b, an impact occurs. The state of the model after impact is
obtained by using the simplified shock theory:

x+ = x−, y+ = y−

ẋ+− ẏ+ =−r
(
ẋ−− ẏ−

) (3)
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where r is the restitution coefficient and the superscripts + and− denote time im-
mediately after and before impact. By virtue of the condition of total momentum
conservation, it gives:

Mẋ++mẏ+ = Mẋ−+mẏ− (4)

Then the following changes of variables are introduced:

ε =
m
M
, ω0

2 =
k1

M
, τ = ω0t, λ =

c1

mω0
, Ω =

ω

ω0
, F =

G
εb

(5)

The variables of the displacements are dimensioned by:

x = Xb, y = Y b (6)

After rescaling, the system of equation (1) can be reduced to the dimensionless
form:

Ẍ + ελ Ẋ +X = εF sinΩτ + ε
2
λFΩcosΩτ

εŸ = 0, ∀|X−Y |< 1
(7)

When |X−Y |= 1, an impact occurs, and the equations (3) and (4) are written
as:

X+ = X−, Y+ = Y−

Ẋ++ εẎ+ = Ẋ−+ εẎ−

Ẋ+− Ẏ+ =−r
(
Ẋ−− Ẏ−

)
, for |X−Y |= 1

(8)

Two new variables representing the displacement of the center of mass and the
internal displacement of the VI NES are introduced (both of them are dimension-
less):

V = X + εY, W = X−Y (9)

Substituting Eq. (9) into Eqs. (8) and (7), the equation between impacts in
barycentric coordinates becomes:

V̈ + ελ
V̇ + εẆ

1+ ε
+

V + εW
1+ ε

= εF sinΩτ

Ẅ + ελ
V̇ + εẆ

1+ ε
+

V + εW
1+ ε

= εF sinΩτ, ∀|W |< 1
(10)
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where the term containing ε2 is very small and can be neglected. The impact
condition (8) can be rewritten as:

V+ =V−, W+ =W−,

V̇+ = V̇−, Ẇ+ =−rẆ−, for |W |= 1
(11)

Then multiple scales are introduced in the following forms:

V (τ;ε) =V0(τ0,τ1, . . .)+ εV1(τ0,τ1, . . .)+ . . .

W (τ;ε) =W0(τ0,τ1, . . .)+ εW1(τ0,τ1, . . .)+ . . .

τk = ε
k
τ, k = 0,1, . . .

(12)

The system is studied in the vicinity of the 1:1 resonance, where both the LO
and the VI NES execute time periodic oscillations with identical frequency. Thus,
a detuning parameter σ representing the nearness of the forcing frequency Ω to
the reduced natural frequency of the LO is introduced:

Ω = 1+ εσ (13)

Substituting Eqs. (12) and (13) into Eqs. (10) and (11), then equating coeffi-
cients of like power of ε gives:

Order ε0:

D2
0V0 +V0 = 0

D2
0W0 +V0 = 0, ∀|W0|< 1

(14)

V+
0 =V−0 , W+

0 =W−0 , for|W0|= 1

D0V+
0 = D0V−0 , D0W+

0 =−rD0W−0
(15)

Order ε1:

D2
0V1 +V1 =−2D0D1V0−λD0V0−W0 +V0 +F sin(τ0 +στ1)

D2
0W1 +V1 =−2D0D1V0−λD0V0−W0 +V0 +F sin(τ0 +στ1)

∀|W0|< 1

(16)

where D0 represents partial derivative with respect to time τ0. From the first equa-
tion of system (14), the solution of V0 (in slow time scale) can be deduced as
follows:

V0 = A(τ1)sin(τ0 +θ(τ1)) (17)
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where A(τ1) and θ(τ1) represent the amplitude and phase of the LO, respectively.
For W0 (in slow time scale), Eqs. (14) and (15) represent a harmonically forced
impact oscillator with symmetric barrier. Under the assumption of 1 : 1 resonance,
its solution can be sought in the following form:

W0 = A(τ1)sin(τ0 +θ(τ1))+
2
π

C(τ1)Π(τ0 +η(τ1)) (18)

where C(τ1) and η(τ1) represent the amplitude and phase of VI NES, respectively.
Π(z) is a non-smooth saw tooth function [26]. Its folded function is expressed as
follows:

Π(z) = arcsin(sinz), M(z) =
dΠ

dz
= sgn(cosz) (19)

As can be observed from Eqs. (18) and (19), impact occurs at τ0 = π/2−η +
jπ with j = 0,1,2, . . . Substituting the above equations in the impact condition
Eq. (15) yields:

cos(η−θ) =
1−C

A
, sin(η−θ) =

2CΓ

πA
(20)

where Γ = (1− r)/(1+ r). By combining the above two equations with trigono-
metric identity, the expression for a Slow Invariant Manifold (SIM) is obtained:

A2 = (1−C)2 +
4C2Γ2

π2 (21)

2.2. Analytical treatment of Slow Invariant Manifold (SIM)
An illustration of the SIM is presented in Fig. 2. Unlike for a cubic NES, the

SIM has a topological structure composed of two branches. It can be observed that
the left branch is unstable and only a part of the right branch is stable (between the
points T1 and T2). The stability of the SIM can be evaluated by direct numerical
integration of Eqs. (14) and (15).

Depending on the different positions of the fixed point in SIM [17], five types
of response regimes are obtained: (1) chaos with no duration of two impacts per
cycle, where no fixed point occurs and the energy is too low to activate the energy
pumping; (2) chaos by intermittency, i.e., Strongly Modulated Response (SMR),
with the fixed point located on the left unstable branch of the SIM; (3) two sym-
metric impacts per cycle, while the fixed point is located on the stable branch;
(4) two asymmetric impacts per cycle, the fixed point starts to pass the transition
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Figure 2: SIM of VI NES: on the stable branch in blue line and two unstable branches in green
line with two transition point T1 and T2. ε = 0.68%, λ = 1.91

point T2 and stays on the right unstable branch; (5) chaos with an infinite number
of impacts per cycle, i.e., the regime with more than two impacts per cycle, where
the fixed point remains higher than in the above cases.

Knowing the variation mechanism of the response regimes, it would be inter-
esting to investigate the efficiency of each regime and the corresponding threshold
for periodic excitation, so as to guide the design of VI NES. In [20], it is demon-
strated that the boundary between response with permanent two impacts per cycle
and that with intermittent two impact cycle (SMR) is optimal, and the critical
point is located at the extreme T1 of the SIM. By setting the derivative of the right
hand side of Eq. (21) to zero, its expression can be obtained as follows:

C1 =
π2

π2 +4Γ2 , A2
1 =

4Γ2

π2 +4Γ2 (22)

Here the value C1 corresponds to the minimum amplitude of the LO, where 1:1
Targeted Energy Transfer (TET) is allowed. However, the precise analytical cal-
culation of the cavity length (i.e., b) needed to ensure response at the critical point
is still not clear and bifurcations of the system at the next order of approximation
need to be analysed.

2.3. Bifurcation analysis
By introducing Eqs. (17) and (18) into the first equation of system (16) and

eliminating the secular term, the asymptotic stability of the fixed points of the
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stable branch with respect to time scale τ1 is studied in the following form:

D1A =
F
2

sin(στ1−θ)− 4C
π2 sin(η−θ)− λC

2

D1θ =− F
2A

cos(στ1−θ)+
4

π2A
Bcos(η−θ)

(23)

Substituting Eqs. (20) into Eq. (23) and introducing ρ = στ1−θ , the expres-
sions governing the evolution of the amplitude A and the phase ρ are obtained:

∂A
∂τ1

=
f1(A,ρ)

g(A)
,

∂ρ

∂τ1
=

f2(A,ρ)
g(A)

(24)

where

f1 = Fπ
3(1−A)sin(ρ)+2FAΓπ

2 cos(ρ)

−4Γ
2
π A2

λ −16A2
Γ−π

3
λ (A−1)2 (25)

f2 =−2FΓπ sin(ρ)−Fπ
2 cos(ρ)+8Γ

2Aσ

+2π
2Aσ +2Γπ λ −2π

2
σ +8A

(26)

g = 8Γ
2A+2π

2A−2π
2 (27)

By equating the derivative of the right-hand side of Eq. (24) to zero, two kinds
of fixed point are calculated. The first is referred to as an ordinary fixed point
located on the stable branch of SIM, and it also satisfies the conditions f1 = f2 = 0
and g 6= 0. The other corresponds to the folded singularity (i.e., T1). In this case
the derivative of Eq. (21) is related to Eq. (27), so it can be found that g= 0. Based
on this, the system f1 = f2 = 0 will be discussed and is rewritten in the following
matrix form: [

α11 α12
α21 α22

][
sinρ

cosρ

]
=

[
β1
β2

]
(28)

where


α11 = Fπ3(1−A), α12 = 2FAπ2Γ,

α21 =−2FπΓ, α22 =−Fπ2

β1 = 4Γ2π A2λ +16A2Γ+π3λ (A−1)2

β2 =−8Γ2Aσ −2π2Aσ −2Γπ λ +2π2σ −8A

(29)
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By solving Eq. (28) for sinρ and cosρ , ordinary fixed points can be obtained
by assuming that the determinant does not vanish. For the folded singularity, it
is observed that det(α) = F2π3g/2 = 0, which means that, when f2 and g are
eliminated, the condition f1 = 0 is automatically satisfied by Eq. (28). Thus the
expression of f2 = 0 can be studied in the following form:√

α2
21 +α2

22 · cos(ρ−δ ) = β2, δ = arctan(
α21

α22
) (30)

Then the phase ρ can be deduced as:

ρ = arctan(
α21

α22
)+ arccos(

β2√
α2

21 +α2
22

) (31)

According to Eq. (31), the critical condition of the excitation amplitude for the
folded singularity to exist is obtained:∣∣∣∣∣∣ β2√

α2
21 +α2

22

∣∣∣∣∣∣= 1 (32)

Thus the threshold of the SMR is calculated as:

Fc =
2(4A1 Γ2σ +A1 π2σ +Γπ λ −π2σ +4A1)

π
√

4Γ2 +π2
(33)

Substituting Eq. (22) into Eq. (33), the threshold can be expressed in a conve-
nient form:

Fc =
2(4Γ3λ +Γπ2λ +4π)

(4Γ2 +π2)
3/2 (34)

Here, it is noted that the variable Fc is a dimensionless variable of excitation,
which is dependent only on the intrinsic properties of the LO and NES (i.e., the
damping of the LO and the restitution coefficient).

3. Criteria for efficient targeted energy transfer

3.1. Optimal design criterion for SMR under periodic excitation
Based on the above analysis, the optimal design of VI NES is to make the

target displacement amplitude of the LO locate at T1 of the corresponding SIM
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under periodic excitation. For this, the cavity length b is chosen as the design
parameter, and the objective is to obtain its optimal value so as to produce efficient
TET for different types of excitation. According to Eq. (5), the relation between
the cavity length and the amplitude of excitation can be written as:

b =
G
εF

(35)

By introducing Eq. (34) into Eq. (35), the critical value of the cavity length is
obtained as:

bc =
G
(
4Γ2 +π2)3/2

2ε(4Γ3λ +Γπ2λ +4π)
(36)
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Figure 3: Time-displacement response of LO and VI NES, and the motion of the system projected
into the SIM: (a) SMR with b > bc; (b) steady state response with b < bc.

To demonstrate the critical function of bc, two response regimes with different
cavity lengths are illustrated in Fig. 3. The time-displacement response of the LO
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Figure 4: TET efficiency explained by the amplitude of LO with the variation of clearance b: Ae
represents the mean amplitude and Am the maximum amplitude.

and VI NES, and the projection of motion of the system into the SIM are presented
in the first and second columns, respectively. As the cavity length is set to b > bc,
a strongly modulated response and its flow jump on the SIM are observed. In
this case, the response acts through successive synchronization between the LO
and the VI NES. When the VI NES is not synchronized, the amplitude of the
LO grows. Under a certain circumstance, the VI NES enters into 1:1 resonance
capture with the LO, making the amplitude of the LO decrease fast by successive
impacts until it decays at the transition point T1. As the cavity length is set as
b < bc, a steady state response with two symmetric impacts per cycle is observed.
As can be seen, after a short transient motion, the flow is rapidly attracted to the
red fixed point.

The variation law of TET efficiency with different lengths of cavity b under
a fixed periodic excitation is presented in Fig. 4, where Ae and Am represent the
mean and the maximum amplitude of the LO, respectively. The two examples
used above are illustrated by b1 and b2. As can be seen, when the clearance
equals bc, the amplitude of the LO is minimum. Thus the calculation of bc can be
used to provide the highest TET efficiency for the NES system.

3.2. Optimal design criterion for transient excitation
For the transient excitation, there does not exist SMR. The response regime

transits continuously from one type to another with the decrease of the master
energy. If the initial master energy is still set around the transition point T1, the
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NES system will rapidly pass the 1:1 resonance capture and enter the chaos with
no duration of two impacts per cycle. In this case, the VI NES is only activated
for a very short time, resulting in a low energy dissipation ratio being produced.
In [20], it is demonstrated that the efficiency of TET should not only be high at the
beginning but also last as long as possible. So in this paper, the transition point T2
between the response with two symmetric and that with two asymmetric impacts
per cycle is proposed for the position of the initial master energy. The analytical
value of T2 can be obtained from Fig. 2, with A2 = 0.6. Based on this idea, the
tuned parameter of the clearance b can be calculated in the following form:

bt =
xm

A2
, xm =

√
(x2

0 +
ẋ2

0

ω2
0
) (37)

where xm represents the initial master energy, x0 and ẋ0 represents the initial posi-
tion and velocity of the LO, respectively.

To demonstrate the criterion, three cases with different clearances are calcu-
lated under the conditions: G = 0, ẋ0 = 0 and x0 = 30 mm. The tuned parameters
are given in Table 1 and the optimal value bt is obtained by Eq. (37), where x1
and x2 represent the amplitude of the LO at the transition points T1 and T2, tx=15
and tx=5 represent the time duration when the amplitude of the LO decreases to
15 mm and 5 mm, respectively.

Table 1: Three cases with different clearance under transient excitation

Tuned parameters
case b (mm) x1 (mm) x2 (mm) tx=15 (s) tx=5 (s)
< bt 20 3.1 12 1.8 3.7
= bt 50 7.8 30 1.3 2.6
> bt 80 11.8 48.2 1 3.3

Transient responses of the first and second case with b < bt and b = bt are re-
spectively presented in Fig. 5 (a) and (b). For the first case, four response regimes
are observed during the whole process. A detailed view of these regimes can be
found in Fig. 6. Firstly, the regime with three impacts per cycle is excited as
shown in area a. Then the response of two asymmetric impacts per cycle appears
consecutively as demonstrated in area b. When the amplitude of the system de-
creases to the transition point T2, the flow starts to follow the fixed points on the
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stable branch, which means that the response of two symmetric impacts per cycle
with the 1:1 resonance capture is activated in area c. When the amplitude of the
system decays to reach the transition point T1, the system escapes from resonance
capture, and the VI NES performs chaotic motion, as shown in area d.
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Figure 5: Time-displacement response of LO and VI NES, and the motion of the system projected
into the SIM: (a) four response regimes with b < bt ; (b) two response regimes with b = bt .

For the second case, as the cavity length is set as b = bt , the master energy is
directly decreased from T2. Under a fast phase of nonlinear beating, the system
enters the 1:1 resonance capture and the amplitude of the LO undergoes a higher
decay ratio than in the first case. Meanwhile, with the increase of the clearance
b, the SIM structure shifts to the upper right side, and the band of the stable
branch largely increases. For the third case, the cavity length increases to b > bt ,
making the initial master energy escape T2 and approach T1 more closely. As a
result, its TET efficiency is large at the beginning period, as can be seen from
the comparison of tx=15 in Table 1. However, as the the amplitude of the LO
decreases to 5 mm, the TET efficiency of this case becomes low and the second
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case performs better in terms of energy dissipation for the whole process.
Thus it can be concluded that tuning the cavity length of a VI NES to bt is a

feasible way of achieving a high TET efficiency under transient excitation. How-
ever, optimal efficiency of TET is achieved only in the stable branch of the SIM
(between T1 and T2), which means that the VI NES is effective only in a certain
range of the external forcing amplitude. For engineering applications, the cavity
length of VI NES is usually fixed. To improve the robustness of VI NES for dif-
ferent types of excitation, tuning the clearances of multiple-degree-of-freedom VI
NESs in parallel would be an alternative approach. For this, the optimal design of
multiple VI-NESs is discussed in the next section.

4. Appropriate design of multiple VI-NESs

In this section, the academic model is updated by replacing single VI NES
attachments with a parallel configuration of n VI NESs, and the dynamic system
with n = 2 is illustrated schematically in Fig. 7. Dynamic motion is consequently
related to a set of n+1 ordinary differential equations given by:

Mẍ+ c1ẋ+ k1x = k1xe + c1ẋe

mÿ1 = 0, ∀|x− yi|< b1

mÿi = 0, ∀|x− yi|< bi, i = 2..n
(38)

System (38) then can be rewritten in dimensionless form:
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Figure 7: Schematic of the dynamic system: a harmonically excited LO coupled with two VI
NESs in parallel

Ẍ + ελ Ẋ +X = εF sinΩτ + ε
2
λFΩcosΩτ

εŸ1 = 0, ∀|X−Y |< 1
εŸi = 0, ∀|X−Y |< ∆i, i = 2..n

(39)

where the variables of the displacements are dimensioned by x = Xb1 and yi =
Yib1. The new physical parameters are expressed as follows:

ε =
m1 +m2 + ..mn

M
, αi =

mi

εM
, ω0

2 =
k1

M
, τ = ω0t,

λ =
c1

εMω0
, Ω =

ω

ω0
, F =

G
εb1

, ∆i =
bi

b1

(40)

In the same way, when |X−Yi|= ∆i, an impact occurs. This yields:

X+ = X−, Y+
i = Y−i

Ẋ++ ε

n

∑
i=1

αiẎi
+
= Ẋ−+ ε

n

∑
i=1

αiẎi
−

Ẋ+− Ẏi
+
=−r

(
Ẋ−− Ẏi

−
)
, Ẏj

+
= Ẏj

−
, ( j 6= i)

(41)

Motions of the centre of mass and internal displacement are introduced in the
following way:

V = X + ε

n

∑
i=1

αiYi, Wi = X−Yi (42)
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Then, substituting Eq. (42) in Eqs. (41) and (40) gives

V̈ + ελ
V̇ + ε ∑

n
i=1Ẇi

1+ ε
+

V + ε ∑
n
i=1Wi

1+ ε
= εF sinΩτ

Ẅi + ελ
V̇ + ε ∑

n
i=1Ẇi

1+ ε
+

V + ε ∑
n
i=1Wi

1+ ε
= εF sinΩτ

∀|Wi|< ∆i

(43)

For this system, the impact condition (41) can be rewritten as:

V+ =V−, W+
i =W−i , V̇+ = V̇−

if |W1|= 1 : Ẇ1
+
=−rẆ1

−
, Ẇ+

i = Ẇ−i −
εα1(1+ r)

1+ εα1
Ẇ1
−
, (i 6= 1)

if |Wi|= ∆i : Ẇi
+
=−rẆi

−
, Ẇ+

j = Ẇ−j −
εαi(1+ r)

1+ εαi
Ẇi
−
, ( j 6= i)

(44)

Then multiple scales Eq. (12) and Eq. (13) are introduced in Eq. (44), system
approximated at order ε0 and order ε1is obtained:

Order ε0:

D2
0V0 +V0 = 0

D2
0Wi0 +V0 = 0, ∀|Wi0|< ∆i

(45)

V+
0 =V−0 , W+

0 =W−0 , for|Wi0|= ∆i

D0V+
0 = D0V−0 , D0W+

i0 =−rD0W−i0
(46)

Order ε1:

D2
0V1 +V1 =−2D0D1V0−λD0V0−

n

∑
i=1

αiWi0 +V0 +F sin(τ0 +στ1)

D2
0Wi +V1 =−2D0D1V0−λD0V0−

n

∑
i=1

αiWi0 +V0 +F sin(τ0 +στ1)

∀|Wi0|< 1, i = 2..n

(47)

With the same method as used in Eq. (21), the SIM expression for multi VI
NESs is finally deduced as:
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A2 = (1−C1)
2 +

4C2
1Γ2

π2

A2 = (∆i−Ci)
2 +

4C2
i Γ2

π2 , i = 2..n
(48)

Here, it can be observed that each VI NES is dependent on the initial energy
stored in the primary system and their performance is decoupled. With the prin-
ciple of additivity and activities of VI NESs, the NESs efficiency is driven solely
by the intrinsic properties of the LO and their own individual characteristics. Re-
ferring to the issue of optimal design for a single VI NES studied in section 3, it
is fairly straightforward to extend the optimal criteria in the case of n-parallel VI
NES by adjusting the two dimensionless variables ∆i and αi, so as to ensure the
VI NESs are activated in a large band of excitation.

The transition point Ti1, which corresponds to the optimal activation energy of
each VI NES that allows 1:1 TET, is given by:

Ci1 =
π2∆i

π2 +4Γ2 , A2
i1 =

4Γ2∆2
i

π2 +4Γ2 , i = 2..n (49)

Thus the multiple VI NESs can be designed using the following rule: A2
11 <

A2
21 < ...<A2

n1. In this case, the activation energy of each VI NES is monotonously
increased, making VI-NESs work robustly in different types of energy. Here, it is
important to emphasize that SIM expressions in Eq. (48) are studied in the vicin-
ity of the 1:1 resonance. If the anticipated motions of multiple VI NESs are not
located in the vicinity of the 1:1 resonance, the principle of additivity may not be
valid and the chaotic response may produce. In this case, the VI NES is not a
NES in the sense that the transfer of energy is no longer irreversible, and the en-
ergy may spread back to the primary system, which will jeopardize the vibration
mitigation performance. To restrict this situation, the energy threshold of each
VI NES (i.e. the curve of each SIM stable branch projected on y axis) should
not be set far away from each other, so that each VI NES can execute oscillation
with identical frequency of LO. To analyze the chaotic characteristic of multiple
VI NESs, Lyapunov exponent is an alternative way [27] and further study will be
carried out on this aspect.

5. Experimental validation

The objective of this section is to experimentally verify the optimal design cri-
teria proposed in the above sections. For periodic excitation, the focus is initially

18



to verify the periodic case at the resonance frequency and then to validate the re-
sults under a range of frequencies. As for transient excitation, the tuned method
for optimal efficiency is verified, and two VI NESs in parallel are tested with the
intention of improving robustness. The detailed procedures are as follows.

5.1. Periodic excitation

(a)

(b)

2 VI NES

LO

Laser

Accelerometer

Shaker

Figure 8: Experimental setup for periodic excitation:(a) global view of the configuration; (b) de-
tailed view of the VI NES

The experimental setup of periodic excitation is presented in Fig. 8, where two
clearances in parallel are used to decide whether one VI NES or two VI NESs are
attached to the LO. The whole system was fixed to a 10 kN electrodynamic shaker.
The raw signals were recorded using a digital oscilloscope and a bandpass filter
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was applied to correct biases and suppress high frequency noise. The displace-
ment of the LO as well as the imposed displacement of the shaker were measured
by two contactless laser displacement sensors. The acceleration was measured by
an accelerometer and the impacts between LO and VI NES could be judged from
sudden changes of the acceleration of the LO. The parameters identified on the
experimental setup and used for the calculation are given in Table. 2.

Table 2: Experimental parameters

Physical Parameters
M 4.7 kg c1 3.02 Ns/m
k1 1.147×104 N/m m 32 g

Reduced Parameters
ε 0.68% λ 1.91
f0 7.86 Hz r 0.6

With the variation of the clearance, three different responses of the LO under
periodic excitation G = 0.25 mm were obtained, as shown in Fig. 9(a-c). Where
the excitation frequency is fixed at the resonance frequency. As can be seen, the
amplitude of the LO with b = bc was smaller than in the other two cases (i.e.,
steady state response with b < bc and chaotic SMR with b > bc), since its fixed
point was targeted at the transition point T1. The optimal length of the cavity bc
under different types of excitation was calculated by Eq. (36) and is presented in
Fig. 9(d). It can be observed that the experimental points are close to the theoret-
ical values and located almost in a line. The differences between the theoretical
and experimental values were mainly caused by the weakly nonlinear damping
of the LO. Thus it can be demonstrated that the analytical calculation of bc can
be used to predict the efficient TET at resonance frequency for different types of
excitation.

For the system in a range of frequencies, if the optimal clearance is still chosen
by the value for resonance frequency, the responses of the other frequency points
will not be optimal and may result in SMR or irregular response without any
duration of two impacts per cycle. Therefore, there does not exist an optimal value
of b for all frequencies. In [20], it is suggested that the objective of controlling
the amplitude of the LO for a range of frequencies can be simplified to that of
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Figure 9: Experimental results of single VI NES: response of the LO under periodic excitation
G = 0.25 mm with (a) b = 25 mm (< bc); (b) b = 34 mm (= bc); (c) b = 45 mm (> bc) and (d)
optimal length of the cavity bc under different types of excitation.

resonance frequency. Thus the clearance bc is continually used as the optimal
value.

Based on the sweep frequency test, frequency response functions (FRF) with
b < bc, b = bc and b > bc were obtained and are illustrated in Fig. 10(a). The
detailed time-displacement responses are presented in Fig. 10(b-c). When b < bc,
the amplitude of LO is decreased with the addition of VI NES, and a small reso-
nance peak still exists in this case. When b > bc, the resonance peak has vanished
and a large band of SMR can be found. However, the average amplitude of LO is
still large in a range around the resonance frequency. When b = bc, there exists a
narrow range of frequency where SMR occurs. Although the VI NES cannot work
at its optimal state for other frequencies except resonance frequency, the average
amplitude of LO is smaller than the above two cases. Thus, the optimal design
for a range of frequencies can directly use the analytical calculation of bc, so as to
make VI NES achieve a high TET efficiency for vibration mitigation.

For the above experimental configuration, the single VI NES case with the
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Figure 10: Experimental results of single VI NES: (a) frequency response curve of the LO with
G = 0.25 mm and detailed view of response of the LO under sweep frequency test with (b) b =
25 mm (< bc); (c) b = 34 mm (= bc); (d) b = 45 mm (> bc).

clearances b = 34 and 23 mm, was observed to be optimal for the excitation with
G = 0.25 mm and 0.15 mm, respectively. Consequently, the clearances of two
VI NESs in parallel were selected by these two values. The frequency response
curves under G = 0.25 mm were recorded for different combinations of b1 and b2
and are showed in Fig. 11(a). The detailed time-displacement responses are pre-
sented in Fig. 11(b-c). When b1 = b2 = 34 mm, the amplitude of the LO around
the resonance frequency is decreased. However, its maximum amplitude shifts
to the left side and still has the same value (7.9 mm) as that of a single VI NES
with b = 34 mm. When b1 = b2 = 23 mm, the amplitudes of the LO at the other
frequencies are decreased. Yet a small resonance peak exists at the resonance fre-
quency, since the clearance is not optimal for this excitation. When b1 = 23 mm
and b2 = 34 mm, the small resonance peak has vanished and the frequency range
for response with two impacts per cycle is increased. Although there is still a
narrow range of frequencies where SMR occurs, its maximum amplitude of the
LO has decreased to 4.9 mm. This value is far lower than in the two cases above,
which means that adding two VI NESs with different clearance can perform a
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Figure 11: Experimental results of two VI NESs: (a) frequency response curve of the LO with
G = 0.25 mm and detailed view of response of the LO under sweep frequency test with (b) b1 =
23 mm, b2 = 23 mm; (c) b1 = 23 mm, b2 = 34 mm; (d) b1 = 34 mm, b2 = 34 mm.

better TET efficiency and improve the robustness in a range of resonance frequen-
cies.

Thus, the design criteria for optimally tuned VI NES can be summarized. If a
single VI NES is applied, it is recommended that the clearance of VI NES should
be optimized at the point of resonance frequency. By using the calculation of
Eq. (36), the maximum amplitude of the LO can be controlled well at resonance
condition (i.e., a single resonance frequency or a range of frequencies). In this
case, a semi-active control method can also be used: by adjusting the clearance,
a VI NES can be tuned to work robustly with its best performance. If multiple
VI NESs are adopted to improve the robustness, the objective should first be to
calculate the optimized clearance for the maximum excitation and then to choose a
smaller length of clearance for a lower level of energy. By choosing VI NESs that
are activated at different types of energy, a high TET efficiency can be obtained in
a large band of excitation.
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5.2. Transient excitation
The experimental setup for transient excitation is presented in Fig. 12, and the

corresponding parameters can be found in Table 2. Here, the initial displacement
of LO was obtained by stretching the string to a fixed position (x0 = 20 mm).
Once the string was cut, both the LO and the VI NES started to vibrate, and
the movement was recorded. The displacement and acceleration of the LO were
measured by a laser and an accelerometer, respectively. By varying the length
of cavity, the transition of response regimes was observed and the comparison of
efficiency for different cavity lengths could be further studied.

Pre-stretched springs 

Figure 12: Experimental setup for transient excitation

The experimental results of single VI NES are presented in Fig. 13. As can be
seen in Fig. 13(a), without VI NES, the vibration extinction of LO follows a natu-
ral exponential decrease; while with VI NES, it follows two phases of quasi-linear
decrease, much faster than the exponential one, during which the displacement of
LO decreases fast until it reaches a transition point (T1) and the decay rate after this
point is obviously lower than the previous one. An enlarged view of acceleration
around this transition point is shown in Fig. 13(b). The sudden pulse of acceler-
ation denotes an impact moment, and the transition between response regime of
two symmetric impacts per cycle and chaos with an infinite number of impacts
per cycle can be clearly identified.

Fig. 13(c) compares the displacement envelope of LO attached to a single VI
NES with different cavity lengths. When b = 10 mm< bt , the master energy is
higher than that of transition point T2 (see Fig. 5), resulting in a relatively low
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Figure 13: Experimental results of single VI NES: (a) time history of the displacement; (b) time
history of the acceleration; (c) comparison of the displacement envelope with different b.
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decay rate. When b = 33 mm= bt and b = 48 mm> bt , both their responses start
from a regime with two symmetric impacts per cycle, causing the vibration ex-
tinction of LO to directly follow a quasi-linear decrease. In addition, it can be
observed that the transition point T1 with b = bt is lower than that with b > bt .
Thus, tuning the cavity length to bt is a feasible way of obtaining an optimal TET
efficiency during the whole vibration process.

The experimental results for two VI NESs are presented in Fig. 14. When the
cavity lengths of two VI NESs are set at two different values with b1 = 33 mm and
b2 = 10 mm, the vibration extinction of LO follows three quasi-linear decreases
(see Fig. 14(a)). If the amplitude of LO is higher than the transition point T1a, the
first VI NES with a large cavity length is activated with two impacts per cycle.
If the amplitude of LO is located in the range between T1a and T1b, the first VI
NES escapes from the activation and the second VI NES with a small clearance
is activated with 1:1 resonance capture. The principle of separate activation can
also be found from the time history of the acceleration (see Fig. 14(b)). As can be
seen, the impact strength of VI NES is related to the cavity length. The horizontal
arrows show the two activations of two VI NESs with different cavity lengths, and
the vertical line illustrates the sudden change between them.

Fig. 14(c) shows the comparison of the displacement envelope of LO attached
to two VI NESs with different cavity lengths. With the addition of another ball,
the three groups of two VI NESs perform better than the case of single VI NES.
When b1 = b2 = 10 mm, the decay rate of first decrease phase is slightly improved,
while the displacement of the transition point is almost the same as that of a single
VI NES with b = 10 mm. When b1 = b2 = 33 mm, the decay rate of first decrease
phase is optimal. However, the efficiency at low energy level is not improved,
and the decay rate is far lower than the other two cases. When b1 = 33 mm and
b2 = 10 mm, the decay rate of first decrease phase is close to that of VI NESs with
b1 = b2 = 33 mm. At low energy level (the amplitude of LO is lower than T1a),
the decay rate becomes better than in the other two cases. Thus this group of VI
NESs can work robustly and efficiently for different kinds of transient excitation.

In summary, the tuned method for transient excitation is verified. The analyt-
ical calculation of Eq. (37) is demonstrated to predict the optimal clearance well.
Moreover, the principles of additivity and separate activities of multiple VI NESs
are observed, and the robustness of vibration control can be improved for a large
band of transient excitation.
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6. Conclusion

The ultimate goal of this paper is to propose the design criteria for optimally
tuned Vibor-Impact (VI) NES to control the vibration under periodic and transient
excitation. To this end, a generalized dimensionless model of a 2-degrees-of-
freedom system comprising a harmonically excited LO strongly coupled to a VI
NES is studied. An analytically obtained Slow Invariant Manifold (SIM) is used to
explain the different response regimes. The transition point (i.e., T1) between the
regime with two symmetrical impacts per cycles and that of Strongly Modulated
Response (SMR) is demonstrated to be optimal for periodic excitation. Then, a
bifurcation analysis is carried out. An activation energy threshold for targeted
energy transfer is obtained and used to design an optimal criterion for a single
NES.

For transient excitation, the critical point (i.e., T2) between the regime with
two symmetrical impacts per cycles and two asymmetrical impacts per cycles is
adopted to calculate the optimal clearance, and it proves that tuning the initial
master energy at this point can achieve a high TET efficiency during the whole
vibration process. Thirdly, the procedure is extended to the case of multiple VI
NESs in parallel. Two principles of additivity and separate activities of VI NESs
are verified theoretically and experimentally.

Finally, experiments involving the whole system for periodic and transient ex-
citation are performed. The results show that the analytical calculation of the
clearance can not only predict the efficient TET at resonance frequency, but can
also achieve an optimal performance to protect the primary system in a range of
frequencies. Furthermore, the design criteria for a single VI NES can be straight-
forward for the application of multiple VI NESs, so as to make VI NES work
robustly under different types of excitation.
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