Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties
Abstract
Whereas efficient and sensitive nanoheaters and nanothermometers are demanding tools in modern bio- and nanomedicine, joining both features in a single nanoparticle still remains a real challenge, despite the recent progress achieved, most of it within the last year. Here we demonstrate a successful realization of this challenge. The heating is magnetically induced, the temperature readout is optical, and the ratiometric thermometric probes are dual-emissive Eu3+/Tb3+ lanthanide complexes. The low thermometer heat capacitance (0.021·K–1) and heater/thermometer resistance (1 K·W–1), the high temperature sensitivity (5.8%·K–1 at 296 K) and uncertainty (0.5 K), the physiological working temperature range (295–315 K), the readout reproducibility (>99.5%), and the fast time response (0.250 s) make the heater/thermometer nanoplatform proposed here unique. Cells were incubated with the nanoparticles, and fluorescence microscopy permits the mapping of the intracellular local temperature using the pixel-by-pixel ratio of the Eu3+/Tb3+ intensities. Time-resolved thermometry under an ac magnetic field evidences the failure of using macroscopic thermal parameters to describe heat diffusion at the nanoscale.