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Abstract

Due to the lack of computational power to perform a fully atomistic simulation of
practical, engineering systems, a number of concurrent multiscale methods is developed
to limit atomic model to a small cluster of atoms near the hot spot. In this paper
the overview of salient features of the main multiscale families is given. The special
attention is drawn towards the role of model adaptivity, that is, which part of the
problem domain to model by the atomic scale (the hot spot) and which by coarse scale
model, as well as where to place the interface of the two models to control the accuracy.
Taking Quasicontinuum method as a reference, review of the evolution of the Bridg-
ing domain/Arlequin method is given, which parallels the development of a posteriori
modeling error estimation.

Keywords: molecular mechanics, atomistic-to-continuum coupling, quasicontinuum, bridg-
ing domain, Arlequin, Cauchy-Born rule, RVE, goal error estimates, goals algorithm

1 Introduction

The emphasis of scientific research in material science has shifted from micro- and meso-
scale to the study of the behavior of materials at the atomic scale of matter. The first
trends of this kind go back to the 1980s. when the scientists and engineers began to include
atomistic descriptions into models of materials failure and plasticity [12]. This research is
related to the terms nano-technology and nano-mechanics. At nano-scale, the effects of single
atoms, individual molecule, or nano-structural features may dominate the material behavior,
especially at failure [12]. The classical continuum mechanics, that has been the basis for
most theoretical and computational tools in engineering [34], is not suitable for nano-scale
applications. Thus, different kind of computational modeling, in particular atomistic and/or
molecular simulation, has become increasingly important in the development of such new
technologies [15,53,59].

For many engineering application domains, the numerical simulations of this kind are
replacing the expensive experimental testing or are being used to complete the experimental
observations and to increase the reliability of parameter identification in experiments under
heterogeneous stress field. In the case of nano-mechanics it is usually impossible to perform
the simple tests (such as the simple tension test), or most of experiments are very expensive
and not very reliable. The experimental analysis of nano-mechanical properties at sub-
micrometer scales de facto became possible with the developments of techniques relying upon
the atomic force microscope (AFM), nanoindentation, or optical tweezers. These techniques
and instrumentation can observe and characterize forces of the order of hundreds of pN,
with displacements of the order of nanometers [12]. Atomistic simulation has been used in
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the research topics like: the atomic-scale effect in fracture and wear, dislocation dynamics
in nano-indentation, nano-composites, carbon nano tubes, nano electro mechanical system
components, semiconductors and biomechanics [11,13].

The main challenge is that atomistic models typically contain extremely large number of
particles, even though the actual physical dimension may be quite small. For example, even
a crystal with dimensions below a few micrometers sidelength has several tens of billions of
atoms. Predicting the behavior of such large particle systems under explicit consideration of
the trajectory of each particle is only possible by numerical simulation, and must typically
involve the usage of the supercomputers [12]. Even though nanoscale systems and processes
are becoming more viable for engineering applications, our ability to model their performance
remains limited, since the fully atomistic simulations remain out of reach for engineering
systems of practical interest.

Multiscale (MS) modeling methods have recently emerged as the tool of choice to link
the mechanical behavior of materials from the smallest scale of atoms to the largest scale
of structures [70]. MS methods are often classified as either hierarchical or concurrent.
Hierarchical methods are the most widely used, for their computationally efficiently. In
these methods, the response of a representative volume element (RVE) at the fine scale
is first computed, and from this a stress-strain law is extracted. Thus, the computations
are performed on each scale separately and the scale coupling is often done by transferring
the problem parameters leading to the classical problem of homogenization (e.g. see early
work [61]). For severely nonlinear problems, hierarchical models become more problematical,
particularly if the fine scale response is path dependent. It should be noted that when failure
occurs, in many circumstances hierarchical models are invalid and cannot be used [26].

Concurrent methods, on the other hand, are those in which the fine scale model (e.g.
atomistic, treated with molecular mechanics) is embedded in the coarse scale model (usually
continuum model treated with FEM) and is directly coupled to it. In the study of fracture,
for example, fine scale models can be inserted in hot spots where stresses become large and
where there is the biggest risk of failure. These hot spots can be identified on the fly or
by a previous run. Molecular mechanics (MM) and/or quantum mechanics (QM) models
are required for phenomena such as bond breaking, but the relevant configuration is far
too large to permit a completely atomistic description. In order to make such problems
computationally tractable, the molecular model must be limited to small clusters of atoms
in the vicinity of a domain of interest where such high resolution models are necessary and a
continuum method should be used for the rest of the domain [26]. Here we primarily focus on
the concurrent, static (equilibrium), atomistic-to-continuum MS modeling, strongly coupling
atomistic and continuum scales.

An overview of current research activities on MS methods can be found in several reviews
[10, 16, 33, 42, 48, 60, 64], each giving a preference to a preferred choice of the method or its
particular feature. For that reason, we seek to give a more complete overview covering all
the salient features of the main families, each covered with a brief, but pointed discussion.
There is also a novel idea to draw attention towards a special role of adaptivity in providing
an optimal form of the atomistic-to-continuum coupling based on the overlapping domain
decomposition. With such focus on adaptivity, this paper compares quasicontinuum (QC)
method and the bridging domain (BD) or Arlequin based coupling. The QC method uses an
adaptive coarse graining approach rather than classical coupling, it can be used as a reference
for adaptive strategy. More precisely, the question we thus address pertains to which part of
the domain should be modeled by the fine (atomic) scale and which by coarse scale model
in a particular problem, and where to place the interface of the two models to control the
accuracy for any solution stage?

The paper is organized as follows. Following this introduction, the paper starts with
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the short overview of atomic models in Section 2 and finishes with the motivation for the
MS methodology and a short list of leading MS methods. Then the standard QC and
BD/Arlequin methods are described in Sections 3 and 4, respectively. Following the gen-
eral description of the two methods the comparison is summarized in 5. Numerical examples
of model adaptivity are presented in Section 6 in order to illustrate these ideas, and provide
quantitative comparison between different adaptive modelling strategies. The concluding
remarks are stated in Section 7.

2 Atomistic (particle) model

2.1 Atomistic interaction modeling

The first choice that should be made for any kind of material modeling is the energy function
describing the system of interest. Once the energy of the atomic interaction is defined, the
essential of material behavior is determined. The main goal of this section is to give a general
introduction to atomistic i.e. non-continuum material modeling, to introduce the essential
ideas and review the literature. It is worth to mention that the reason for introducing
the atomistic modeling is two-folded. First, the atomistic modeling is used as a testing
ground for energetics of the system, by using the simplest generic form of the interaction
model. Second, the potential function (U) driving the molecular system can take an extremely
complicated form, when the goal is to represent the quantitative predictions for specific
material. In this case, an accurate representation of the atomic interactions has to be material
specific. The nature of these interactions is due to complicated quantum effects taking place
at the subatomic level that are responsible for chemical properties such as valence and bond
energy [23,28,70]. However, quantum mechanics based description of atomic interaction is not
discussed herein, emphasis is rather on the empirical interaction models that can be derived
as the result of such computations. Alternatively, the function U in classical interatomic
potential that can be obtained from experimental observations and should accurately account
for the quantum effects in the average sense. However, many different expressions can be fit
to closely reproduce the energy predicted from quantum mechanics methods (semi-empirical),
while retaining computational efficiency [2, 12]. Needless to say, there is no single approach
that is suitable for all materials and for all different phenomena of material behavior that we
need to describe. The choice of the interatomic potential depends very strongly on both the
particular application and the material.

The general structure of the potential energy function for a system of N atoms is

U(r1, r2, . . . , rN) =
∑
i

V1(ri) +
∑
i,j>i

V2(ri, rj) +
∑

i,j>i,k>i

V3(ri, rj, rk) + · · · . (1)

where the function Vm, ∀m = 1, 2, . . ., represents the m-body potential and ri the position
vector of the atom i. The first term of the equation (1) indicates the effect of an external force
field on the system where it is immersed, such as gravitational or electrostatic. This term
is usually ignored in practice, [70]. The second term V2 or Vij shows pair-wise interaction
depending only on the pair separation rij = |ri − rj| between atoms i and j. The three-
body term involves angle-dependent forces, whereas four-body term includes torsion effects.
In short, m-body potential terms for m > 2 are usually called multi-body potentials. The
simplest form used for practical reasons is when the sum in (1) is truncated after second term
resulting with the pair-wise potential.
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2.2 Pair-wise potentials

The total energy of the system in pair potentials is given by summing the energy of all atomic
bonds1 (V2(rij)) over all N particles in the system.

U =
1

2

N∑
i 6=j=1

N∑
j=1

V2(rij) =
N−1∑
i=1

N∑
j>i

V2(rij). (2)

Note the factor 1/2 accounts for the double counting of atomic bonds. One of the most well
known interatomic potentials is the Lennard-Jones (LJ), or yet called 6-12 potential. The
potential energy function for the LJ potential is expressed as

V LJ
2 (rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)
, (3)

where ε and σ are constants chosen to fit material properties (no relation to continuum stress
and strain, see Fig. 1) and rij is the distance between two atoms i and j. The 1/r12

ij term is
meant to model the repulsion between atoms as they approach each other, and is motivated
by the Pauli principle in chemistry. The Pauli principle implies that as the electron clouds of
the atoms begin to overlap, the system energy increases dramatically because two interacting
electrons cannot occupy the same quantum state. The 1/r6

ij term adds cohesion to the system,
and is meant to mimic van der Waals type forces. The van der Waals interactions are fairly
weak in comparison to the repulsion term, hence the lower order exponential is assigned to
the term. LJ 6-12 is an example of potential limited to the simulations where a general class
of effects is studied, instead of specific physical properties, and a physically reasonable yet
simple potential energy function is desired [33].

Since the LJ potential is highly nonlinear function of the atom pair distance rij, it is
sometimes useful to use its linearized form in terms of so-called harmonic potential

V H
2 (rij) =

1

2
kij (rij − rij,0)2 , (4)

where rij,0 is the initial (equilibrium) atomic pair distance, and kij is the bond stiffness. The
harmonic potential can describe the atomic system behavior for small atomistic separation
(refer Fig. 1). Hence, this potential is usually chosen as the first and simplest description of
the atomic interaction, in particular in development of the MS methods where the emphasis
is on the coupling and not on the accurate and realistic description of different material
mechanisms.

LJ look alike potentials are the Morse and Buckingham potentials. The Morse potential
consists of the exponential repulsion and attraction and three adjustable parameters [66]. It
is originally designed for covalent bond which is strongly space oriented and a description of
radial stretching is not sufficient to describe it. The Morse potential is computationally more
expensive than the LJ potential due to the exponential term but it models interaction in a
more realistic way. The Buckingham potential consists of more physical exponential Born-
Meyer repulsion and the van der Waals attraction but at the small inter-atomic separations
the potential becomes un-physical (often referred to as Buckingham catastrophe) [66]. In the
sequel the example of the improved pairwise potential is described.

1Often the total energy of the system of atoms is represented as the sum of atom energies. That is the
energy is given on per atom basis (not per bond) as U = 1

2

∑N
i=1 Ei, where Ei is the energy of atom i.
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Figure 1: Lennard-Jones and Harmonic potential (dashed line). Note that the Harmonic
potential is a suitable approximation when the particles are around the equilibrium position.

2.3 Embedded atom method (EAM) potentials and multi-body
potentials

This kind of interaction models are widely used to model metals [17, 21]. A local density
dependent contribution is added to the pair potential energy function (2) by embedding
energy term F

U =
∑
i,j 6=i

V2(rij) +
∑
i

F (ρi). (5)

The embedding energy F (ρi) is related to the environment of the atom i, and ρi is the local
electron density. The main advantage of this kind of potential is the ability to describe
surfaces or cracks since they incorporate the variation of bond strength with coordination
(density).

A number of different approaches to realistic description of behavior of solids based on the
first-principles or quantum mechanical calculations have been developed in recent decades.
These models account for the environmental dependence of the bond strength with the force
between any two particles depending upon the position of several neighbouring particles.
Besides EAM, the other examples of this kind of potentials are Finnis and Sinclair potential
describing metallic bonds, and the Brenner potential used for hydrocarbon bonds [28].

2.4 Solution strategy and motivation for MS methods

We focus in this work upon the mechanics behavior only, in the context of quasi-static loading
applications. The equilibrium configuration of solids corresponds to a state of minimum
energy. Similar to the FEM, that the positions of all nodes are determined by minimizing
the energy in the solid. Thus, for a system of N atoms, the equilibrium configuration is
determined by minimizing

Π = U −
N∑
i

f̄i · di, (6)

where U denotes the energy stored in the atomic bonds, and di and f̄i denotes displacement
and external force on atom i, respectively. Since the continuum FEM and molecular me-
chanics share a common ground of energy minimization there is a number of contributions
regarding so called atomistic FE approach (or AFEM method), inserting molecular mechanics
in the context of FEM, see e.g. [39–41,68,69].
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The task of minimizing (6) quickly becomes intractable for large number of particles
(atoms). This, together with the assumption that the calculation of specific quantities of the
solution can be accurately approximated by replacing the particle model by a coarser model
(i.e. continuum model), is the basis for multiscale (MS) modeling. Extensive work has been
done in the development of atomistic-to-continuum MS modelling approaches, starting with
early works by Mullins and Dokainish (1982.) [49] and Kohlhoff et al. (1990.) [36]. Mullins
simulated 2D cracks in α-iron with the atomic scale models, and due to the restrictions of
the computational power the question was how to connect the atomic model and surrounding
continuum. Kohlhoff et al. proposed a new method for combined FE and atomistic analysis
of crystal defects, called FEAt. Both papers dealt with the problem of proper treatment of
the transition between the lattice and continuum.
A number of MS methods developed recently from theoretical standpoint of view appear very
different. However, as shown in [48], at the implementation level all these methods are in fact
very similar. The performance of a number of most frequently used methods is compared
in a linear framework on a common benchmark test. The ways in which various multiscale
methods differ are the formulation (energy or force based model), the coupling boundary
conditions, the existence of the handshake region (overlapped or non-overlapped domain de-
composition), and the choice of the continuum model. The list containing: quasicontinuum
(QC) method (in Section 3), bridging domain (BD) method (in Section 4), coupling of length
scales (CLS), bridging scale (BS) method [33,35,57], coupled atomistics and discrete disloca-
tions (CADD), Atomistic-to-continuum coupling (AtC) [4, 5, 27], etc. is also not exhaustive
but the unified framework, available computer code, and a quantitative comparison between
the methods offer a good overview. Note that there is also a very recent effort of coupling
non-local to local continuum [32] in the Arlequin framework (see Section 4). An alternative
to discrete modeling of atomic/particle systems is the use of non-local continuum mechanics
models (NLCM) [43]. NLCM reduces the computational costs but has the ability to capture
non-local interactions. However since the simulation using NLCM is also costly due to assem-
bly operation of the discretized model where each interaction point interacts with multiple
neighbours, and the fact that this reduces the sparsity of the matrices, similar principle as
in BD and QC method of coupling discrete, non-local particle model with local continuum
is used. The key challenge is then again the gluing of non-local continuum model with the
local one.

The standard approach in these models is to a priori identify the atomistic and continuum
regions and tie them together with some appropriate boundary conditions. In addition to
the disadvantage of introducing artificial numerical interfaces into the problem a further
drawback of many of these models is their inability to adapt to changes in loading and an
evolving state of deformation. Take for example the problem of nanoindentation. As the
loading progresses and dislocations are emitted under the indenter the computational model
must be able to adapt and change in accordance with these new circumstances.

In the sequel the QC and the BD/Arlequin methods are described in more detail. The
goal is, however, to show the evolution of the BD/Arlequin coupling approach and to compare
the features regarding ability to adapt.

3 Quasicontinuum method

The Quasicontinuum (QC) method is originally proposed in late 90’s by Tadmor, Ortiz and
Phillips [67]. Since then it has seen a great deal of development and application by a number
of researchers. The QC method has been used to study a variety of fundamental aspects
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of deformation in crystalline solids, including fracture [31, 45, 46]2, grain boundary slip and
deformation [62]. The nano-indentation [63] and similar applications are examples where
neither atomistic simulation nor continuum mechanics alone were appropriate, whereas the
QC was able to effectively combine the advantages of both models. The main goal of the
QC method is the provide a seamless link of the atomistic and continuum scales. This goal
is achieved by the three main building blocks [22,47]:

1. Reduction of degrees of freedom (DOF) by coarse-graining of fully atomistic resolution
via kinematic constraints. The fully atomistic description is retained only in the regions
of interest.

2. An approximation of the energy in the coarse grained region via numerical quadrature.
The main idea is to avoid the need to calculate the energy of all the atoms, but retain
only a few so-called rep-atoms.

3. Ability of the fully refined, atomistic region to evolve with deformation, where adap-
tivity is directed by suitable refinement indicator.

3.1 DOF reduction or coarse graining

If the deformation changes gradually on the atomistic scale, it is not necessary to explicitly
track the displacement of every atom in the region. Instead it is sufficient to consider some
selected atoms, often called representative atoms or rep-atoms. This process is in essence
the upscaling via coarse graining. Only rep-atoms have independent DOF while all other
atoms are forced to follow the interpolated motion of the rep-atoms. The QC incorporates
such a scheme by means of the interpolation functions of the FE method, and thus the FE
triangulation has to be performed with rep-atoms as FE mesh nodes. This way continuum
assumption is implicitly introduced in QC method. Thus, if the potential Π is given as a
function of displacement u (similarly as in (6))

Π(u) = Etot(u)−
N∑
i=1

f̄iui, (7)

where f̄i is the external force on the atom i and Etot is an atomistic internal energy

Etot =
N∑
i=1

Ei(u), (8)

the kinematic constraint described above is performed by replacing Etot with Etot,h

Etot,h =
N∑
i=1

Ei(u
h). (9)

In the above equation the displacement approximation is given via standard FE interpolation

uh =

Nrep∑
i=1

Ni(ui), (10)

where Ni is a shape function for the node/rep-atom i. The density of rep-atoms vary in
space according to the considered problem. In the vicinity of region of interest every atom
is considered as rep-atom and in region of more slowly varying deformation gradient, only a
few atoms are chosen.

2In [45,46] the QC method has been applied to crack tip deformation and was shown to account for both
the brittle fracture and ductile crack tip dislocation emission.
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3.2 Efficient energy calculation via Cauchy-Born rule

Described kinematic constraint on most of the atoms in the body will achieve the goal of
reducing the number of degrees of freedom in the problem. However, for the purpose of
energy minimization the energy of all the atoms (not just rep-atoms) has to be computed.
The way to avoid visiting every atom is the Cauchy-Born (CB) rule [24,25,72]. The CB rule
postulates that when a simple, mono-atomic crystal is subjected to small displacement on its
boundary then all the atoms will follow this displacement. In QC this rule is implemented in
that every atom in a region subject to a uniform deformation gradient will be energetically
equivalent. Thus, energy within an element can be estimated by computing the energy of
one, single atom in the deformed state. The estimation is performed simply by multiplying
the single atom energy by the number of atoms in the specific element. The strain energy
density (SED) of the element can be expressed as:

W (F) =
E0(F)

Ω0

, (11)

where E0 is s the energy of the unit cell when its lattice vectors are distorted according to
deformation gradient F, and Ω0 is the volume of unit cell. The sum in eq. (9) is reduced to
number of FEs (Nelem)

Etot,h ≈ Etot,h′ =

Nelem∑
e=1

ΩeW (Fe), (12)

where the element volume and unit cell volume are related as neΩ0 = Ωe, and ne is the number
of atoms contained in element e. Using the CB rule, the QC can be thought of as a purely
continuum formulation (local QC), but with a constitutive law that is based on atomistic
model rather than on an assumed phenomenological form [47]. Within QC framework, the
calculation of CB energy is done separately in a subroutine. For a given deformation gradient
F the lattice vectors in a unit cell are deformed according to given F and the SED is obtained
according to eq. (11).

3.3 Non-local QC and local/non-local coupling

In settings where the deformation is varying slowly and the FE size is adequate with respect
to the variations of the deformation, the local QC is sufficiently accurate and very effective.
In the non-local regions, which can be eventually refined to fully atomistic resolution, the
energy in (9) can be calculated by explicitly computing only the energy of the rep-atoms by
numerical quadrature

Etot,h ≈ Etot,h′ =

Nrep∑
i=1

niEi(u
h) (13)

where ni is the weight function for rep-atom i and is high for rep-atoms in regions of low
rep-atom density and low for high density. Thus, ni is the number of the atoms represented
by the i-th rep-atom with the limiting case of ni = 1 for fully atomistic case and consistency
requirement

Nrep∑
i=1

ni = N. (14)

The main advantage of the non-local QC is that when it is refined down to the atomic scale,
it reduces exactly to lattice statics.

High accuracy of non-local formulation can be combined with the high efficiency of the
local formulation. In order to do that non-local formulation is employed in the region where
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atomic scale accuracy is needed, and local where the deformation is changing relatively slow.
In this coupling approach the rep-atom can be chosen as local or non-local depending on its
deformation environment giving Nrep = Nloc +Nnonloc. Total energy is approximated as

Etot,h =

Nnonloc∑
i=1

niEi(u
h) +

Nloc∑
i=1

niEi(u
h), (15)

where the weights ni are determined from the Voronoi tessellation i.e. by means of the cells
around each rep-atom. The cell of atom i contains ni atoms, and of these atoms nei reside in
FE e adjacent to rep-atom i. The weighted energy contribution of rep-atom i is then found
by applying the CB rule within each element adjacent to i such that

niEi =

N i
el∑
e

niΩ0W (Fe), ni =

N i
el∑
e

nei , (16)

where Ω0 is the cell volume for single atom, and N i
el is the number of FE adjacent to atom i.

3.4 Local/non-local criterion

The criterion to trigger the non-local treatment is based on the significant variation of de-
formation gradient3. Precisely, we say that the state of deformation near a representative
atom is nearly homogeneous if the deformation gradients that it senses from the different
surrounding elements are nearly equal. The non-locality criterion is then:

max
a,b,k
|λak − λbk| < ε, (17)

where λak is the k-th eigenvalue of the right stretch tensor for element a, k = 1 . . . 3 and
indices a and b (a 6= b) refers to the neighboring elements of rep-atom. The rep-atom will be
made local if this inequality is satisfied, and non-local otherwise, depending on the empirical
constant ε.

3.5 Adaptivity

Without a priori knowledge of where the deformation field will require fine-scale resolution,
it is necessary that the method should have a built-in, automatic way to adapt the finite
element mesh through the addition or removal of rep-atoms. This is a feature that is in QC
inherent from the FE literature, where considerable attention has been given to adaptive
meshing techniques for many years. Typically in FE techniques, a scalar measure is defined
to quantify the error introduced into the solution by the current density of nodes (or rep-
atoms in the QC). Elements in which this error estimator is higher than some prescribed
tolerance are targeted for adaptation, while at the same time the error estimator can be used
to remove unnecessary nodes from the model.

The error estimator in terms of deformation gradient is defined as the difference between
the actual solution and the estimate of the higher order solution (see [47]). If this error is
small, it implies that the higher order solution is well represented by the lower order elements
in the region, and thus no refinement is required. Needles to say, elements for which the error
is greater than some prescribed error tolerance are targeted for refinement. Refinement then

3Note that simply having a large deformation in a region does not in itself require a non-local rep-atom, as
the CB rule of the local formulation will exactly describe the energy of any uniform deformation, regardless
of its size.
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proceeds by adding three new rep-atoms at the atomic sites closest to the mid-sides of the
targeted elements4. If the nearest atomic sites to the mid-sides of the elements are the atoms
at the element corners, the region is fully refined and no new rep-atoms can be added. The
same error estimator is used in the QC to remove unnecessary rep-atoms from the mesh. In
this process, a rep-atom is temporarily removed from the mesh and the surrounding region is
locally re-meshed. If all of the elements produced by this re-meshing process have a value of
the error estimator below the threshold, the rep-atom can be eliminated. Essentially, the idea
is to examine the necessity of each node. To prevent excessive coarsening of the mesh far from
defects the nodes corresponding to the initial mesh are usually protected from deletion [62].

4 Bridging domain and Arlequin-based coupling

The Bridging domain (BD) method is in essence a partially overlapping domain decomposi-
tion scheme used for atomistic-to-continuum coupling developed by Belytschko and Xiao in
2003 [8] for the static, and [71] for dynamical problems. The compatibility in the overlapping
domain is enforced by Lagrange multipliers. The evolution of the aforementioned method (see
also [3,9,73]) has much in common with recent works in the finite element (FE) community
on the coupling of nonconforming meshes in the overlapping subdomain. This approach is
known as Arlequin method developed by Ben Dhia [19,20,29]. The same Arlequin approach
is lately also aplied for atomistic-to-continuum coupling like in [6, 7, 14, 18, 30, 54, 55]. More
precisely, the domain with models coupling Ω is divided in three subdomains as shown in
Fig. 2. The atomistic domain Ωa is discretized with molecular dynamics or rather molecular
mechanics (MM), whereas the continuum mechanics domain Ωc discretization is carried out
by FEs. The atomistic and continuum domains overlap in the domain Ωb = Ωa ∩ Ωc. This
overlapping domain is also called bridging, handshake or coupling domain. The role of the

Figure 2: Scheme of the coupled model and the nSM technique.

continuum model is to replace the molecular model with a coarser, and thus computationally
cheaper, model in Ωc ⊂ Ω away from the region of interest (e.g. lattice defect). Initially
emphasis of the research was to make the coupling of the two different models as seamless
as possible. No special attention was devoted to the question how to adaptively refine the
model around the region of interest and where to position the handshake zone i.e. how far
from the region of interest.

4In the QC formulation the constant strain triangle (CST) elements are used with the linear shape functions
to interpolate the displacement field within each element. In this case the deformation gradient will be
uniform.
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4.1 Construction of surrogate model

The role of the surrogate model is to propagate only the large-scale information. The choice
of this model depends on the nature of the material but it should be selected as the most
’compatible’ model with the atomistic or particle model in the sense of homogenization [14].
Thus, the material parameters of the surrogate continuum constitutive model should be
calibrated accordingly. To that end, there are two approaches that appear in the BD/Arlequin
literature.

The first one is related to the construction of constitutive equation via the Cauchy-
Born rule introduced by the quasi-continuum (QC) approach as proposed e.g. in [71, 73].
The Cauchy-Born rule is described in detail in section 3.2. The second approach pertains
to computing the equivalent continuum model parameters through homogenization. Simple
illustration for 1D case is given in [6] for the case of linear elastic continuum. More systematic
approach to calibrating the continuum model parameters exploits the virtual experiments on
the representative volume element (RVE) as suggested in [55]. The continuum model is based
on plane stress linear elasticity and the constitutive relation is defined by Hooke’s law. A
RVE is considered to be a piece of material (atomistic lattice in this case) whose dimension
is increased in iteratively until the consistent homogenized medium is obtained where the
material parameters do not vary with further size increase. The lattice samples are larger
than the effective RVEs in order to avoid boundary effects. The choice of the continuum
model is, naturally, problem dependent (see [7] for nonlinear hyperelastic material model
suitable for polymeric materials).

An example of the (virtual) experiment for the uniaxial tension case is described in sub-
sequently. Let the lattice sample size be l1× l2 with constraints on the left and bottom atom
layers, and imposed force (to obtain traction t̄) or displacement ū on every right-most atom
Fig. 3. Without loss of generality we take the pair-wise interaction, where the internal energy

. .
 .

1
2

n
. .

 .

i

Figure 3: Scheme of the lattice sample and increasing square shaped RVEs (1, 2, . . . , i, . . . , n)
increasing until material parameters convergence. Due to simplicity, only RVE 1 is shown as
a lattice structure.

of the RVE is calculated as in (2) with ∀i, j ∈ RV E. The strain energy density is calculated
by dividing the atomic energy URV E by the initial volume of the RVE (Vi)

Wa =
URVE

Vi
. (18)

The variation of the atomistic SED with the size of the RVE is shown in Fig. 4. It is assumed
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Figure 4: Atomistic strain energy density (Wa) convergence with increasing size of RVE.

that the energy densities obtained from the continuum and atomistic models are identical,
so that W = Wa

5, where W is continuum strain energy density. Such value of W is further
used to calculate the continuum part of energy (as indicated in equations (19) and (20)).
This kind of approach obviates the need for the CB hypothesis to be fulfilled, which is used
for composite lattices e.g. in 1D setting [14].

4.2 Governing equations and coupling

Total potential energy of the system may be written as

Π = Etot,w = Ec
w(u) + Ea

w(d)− Eext(u,d), (19)

where u i d are displacement vectors in the continuum and atomistic domains, respectively.
Furthermore, Eext is the work of external forces, while Ec

w and Ea
w are weighted continuum

and atomistic energies, defined as

Ec
w(u) =

∫
Ωc
wc(X)W (F) dΩc, Ea

w(d) =
1

2

∑
i,j∈Ωa

waVij. (20)

In the bridging domain the two models overlap, and the weighting functions wc and wa in
(20) partition the energy. The weighting function serves to blend the behavior from the
continuum model (wc) and the atomistic model (wa) and to avoid the double counting of the
energy in the bridging domain. Furthermore, the use of an overlapping subdomain obviates
the need for the FE nodes of the continuum model to correspond to the atomic positions.
The weighting functions wc and wa define a partition of unity of the energy in the bridging
domain as follows:

wc(X) = 1 for X ∈ Ωc \ Ωb,

wa(X) = 1 for X ∈ Ωa \ Ωb, (21)

wc(X) + wa(X) = 1 for X ∈ Ωb.

The energy weighting functions can be taken with constant value (e.g. 0.5), linear (ramp) and
cubic functions of X in Ωb for 1D case see Fig. 5). We note that all three possible distributions
for the atomistic weighting function wa are depicted in Fig. 5, but only the linear continuum
weighting function for continuum energy is indicated in Fig. 5) by dashed line in order not to
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Figure 5: Energy weighting function distribution in the bridging zone.

overburden that illustration. Already in early contributions by [8, 73] the discrete coupling
of the atomistic and continuum models was achieved by forcing displacement compatibility
in the bridging domain as u(X = Xi) = di, ∀i ∈ Ωb. There, the Lagrange multiplier
(LM) method was used to convert the problem of constrained minimization into finding the
minimum of the larger, unconstrained problem. Hence, LMs, denoted with λ, are used to
enforce the compatibility between the discrete atomistic displacement (discretely for each
atom within the coupling zone) and the continuum displacement field. This results with the
following Lagrangian

WL = Etot,w + C = Etot,w +
∑
i∈Ωb

∫
Ωb

λ(X) · [u(X)− di] δ(X−Xi)dΩ, (22)

where C is the constraint in terms of the energy. In numerical implementation, displacement
field in Ωc and LM fields in Ωb are approximated by using, respectively, the shape functions
Ni(X) and Nλ

k (X) as

u(X) =
∑
i∈S

Ni(X)ui, λ(X) =
∑
k∈Sλ

Nλ
k (X)λ̂k, (23)

with ui and λ̂k as the corresponding nodal values. Two limit cases regarding the LM field
approximation are: i) the strict (or so called non-interpolated or atomic/particle) coupling
with the LMs defined with atoms in the bridging zone and where i.e. Nλ

k (Xi) = δki; ii) the
interpolated (or continuum) coupling where the λ-nodes coincide with FE nodes and the
LM shape functions Nλ

k correspond to the FE shape functions Nk. The distribution of the
λ-nodes for the two cases is illustrated in Fig. 6 for 1D case.

...

lb

...

strict coupling
 interpolated c.

-λ node
...

Figure 6: Scheme of the distribution of the LM nodes for strict and interpolated coupling.

In recent works on BD/Arlequin method e.g. [6, 14, 30, 55, 58] the displacement compati-
bility is given as u(X) = db(X), where db(X) is the regularized atomistic displacement field
in Ωb that can be interpolated. For example, the atomistic displacement field is based on an
MLS approximation in [30], or on a linear polynomial interpolations in [6]. As in the discrete
case, the Lagrange multiplier field λ is used to enforce the displacement continuity in a weak
sense defined through the scalar product (λ,uc − db). Two kind of scalar products are con-
sidered (λ,uc − db)L2 and (λ,uc − db)H1 together with the performance and applicability in

5Taking continuum model behavior to be governed by Hooke’s law, it is possible the calibrate Young’s
modulus (only the converged value is taken into further consideration).
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atomistic-to-continuum coupling. The coupling term C (as shown in (22)) is now defined as
follows

CL2 =

∫
Ωb

λ · (uc − db)dΩ, (24)

CH1 =

∫
Ωb

λ · (uc − db) + l2ε(λ) : ε(uc − db)dΩ, (25)

where l has the unit of a length, and corresponds to a characteristic dimension of the cou-
pling zone. Apart from the advances in the coupling itself which is mostly related to the
development of the Arlequin method advocated in initial work by Ben Dhia [20] and its fur-
ther application to the atomistic-to-continuum coupling, this method is acquiring the ability
to accommodate the model and decrease the error in chosen quantity of interest. That is,
the adaptivity described above for the QC method was included in the BD/Arlequin. This
evolution parallels recent development in goal oriented error estimate theory as discussed in
forthcoming section.

4.3 Adaptivity and error estimate

In computer simulations of physical models there are two major sources of error. Approxima-
tion error due to the the discretization of mathematical models, and modeling error related
to the simplification or in general to the natural imperfections in abstract models of actual
physical phenomena. The focus is here on the estimation and control of modeling error.
This subject has been introduced in recent years and was initially devoted to estimating
global modeling error e.g. [1]. Since then, extensions to error estimates in specific quanti-
ties of interest (estimate upper and lower bounds of error in linear functionals) have been
proposed [51, 52, 56]. As an example Oden and Vemaganti [52] proposed an extension of a
posteriori modeling error estimation for heterogeneous materials to the quantities of interest
so-called goal-oriented error estimates. Many candidates for local quantities of interest are de
facto quantities that one actually measures when assessing mechanical response e.g. average
stresses on material interfaces, displacement, etc. Mathematically, a quantity of interest is
any feature of the fine-scale solution that can be characterized as a continuous linear func-
tional on the space of functions to which the fine-scale solution belongs. Analogously as
in [52], where the error estimates are related to the error between fine-scale and regularized
(homogenized) model, goal-oriented error estimation is extended to the case of discrete mod-
els (lattice) in [50]. That is, this approach is used to estimate the modeling error between
the atomic structure (lattice) and the surrogate, continuum model (i.e. FE discretization of
the continuum model).

The idea behind the goal oriented adaptive modeling (as shown in the mentioned ref-
erences) is to start from coarse, regularized model and to adaptively proceed towards fine
model. Hence, the model is adopted to deliver local quantity of interest to within preset accu-
racy. The general process of adapting the surrogate model in order to decrease the modeling
error in specific quantities of interest is referred to as the Goals Algorithms.

The basis of goal oriented error estimates is furthermore employed in the coupling of
atomic and continuum models. The difficulty in the use of such coupling methods is to
decide where to locate the overlap region between the two models so as to control the accuracy
of their solutions with respect to the fully atomistic model. The convergence study of the
modeling error in the context of atomistic-to-continuum (Arlequin type) coupling approaches
is performed in [18,54]. The study is performed on a simple 1D problem that consists of chain
of springs (as a fully atomic model), with a local defect modeled by a sudden change in the
spring stiffness, and the coupled atomic-continuum model. The errors that are quantified
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between the two models are defined in terms of atomic displacement in Ωa. The exact
displacement is the one obtained by the fully atomic model (d) and the approximation (dh)
obtained by the coupled model. Two quantities of interest are studied: firstly (Q1) defined
as atomic displacement, and the second one (Q2) as average force on atom. The associated
modeling errors are εi = Qi(d) − Qi(d

h), where i = 1, 2. This convergence study shows
decrease of the mentioned modeling errors with the increase of the Ωa. This analysis was a
first step6, and a basis for the development of the adaptive strategy.

Finally, the Goals algorithm is extended to the Arlequin based coupled atomistic-to-
continuum modeling [18, 55]. The adaptive procedure that controls the error is obtained by
generating a sequence of surrogate problems so that the modeling error satisfies:

e = Q(d)−Q(dh) ≤ γtol, (26)

where γtol is predefined tolerance. Reduction of the modeling error at each iteration is done
by locally enriching the surrogate model, i.e. by locally switching on the atomic model in the
subregions where the continuum model is not accurate enough7. Modeling error is defined
globally over the whole domain but can be decomposed into local contributions (subdomains).
Naturally, the elements of the finite element mesh used to discretize the continuum model
are chosen as subdomains or cells. Now, some user-defined parameter (subdomain tolerance
similar as γtol) is chosen to decide when can the subdomain be switched from the continuum
model to the particle model.

5 MS methods comparison

In the foregoing, we have given an overview of the mainstream MS methods in terms of QC
method and BD/Arlequin based coupling. The latter currently attracts the greatest attention
with many BD/Arlequin recent developments, but it still has not been fully completed as
the simpler, but well known QC method. Therefore, we try to present in this section the
comparison of these two methods, hoping to be able to draw lessons on further improvements
to the present practise. This comparison is carried out regarding: 1. coupling algorithm, 2.
continuum modeling, 3. applicability, and finally 4. adaptivity strategy.

Coupling algorithm

The coupling algorithm of these two methods are drastically different. QC method seeks to
provide a gradual transition, where the mesh composed of repatoms as nodes is gradually
refined starting from the local towards the non-local description. This gradual transition is
numerically more convenient regarding its capability to reduce the ill-conditioning. However,
it also has a few drawbacks. First of all, an enormous refinement has to be performed in
going from the FE continuum representation to the atomistic lattice size. Furthermore, the
FE nodes and the atoms have to coincide. Contrary to that, BD/A method couples the
two models only in the zone of partial overlap. Neither gradual transition nor coincidence
between the nodes and elements are needed. However, atomistic and continuum DOFs are
completely separated and additional unknowns in terms of Lagrange multipliers that enforce
the coupling need to be accounted for. In addition, in order to avoid double counting the
blending of the energy in overlapping domain is done by weighting functions, which also have
to be chosen appropriately.

6This fact is rather obvious as increasing the atomic domain corresponds to setting the overlap region away
from the defect, that is, to couple the two models in a region in which they are supposed to be compatible.

7No switching back to the coarse model is described in the mentioned references, whereas in QC method
the procedure of removing unnecessary repatoms from the mesh is studied.
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Continuum modeling

QC method works with large deformation intrinsically. That is, CB rule is used for continuum
constitutive relation thus constitutive law is based on atomistics rather than on an assumed
phenomenological form. On the other hand CB hypothesis is satisfied only for simple lattice
structures8. On the other hand, due to use of classical coupling of atomic and continuum
domains, The BD/A method offers another approach to defining the surrogate (homogenized)
continuum model. Namely, fitting the material parameters by virtual experiments on RVE,
the atomistic part is reduced to the corresponding continuum. Thus, there is no need for CB
hypothesis to be satisfied.

Applicability

During development period of the QC method, it served both as a key vehicle for understand-
ing of the nature of atomistic-continuum coupling, and as a practical tool for investigating
problems requiring coupled atomistic-continuum solution procedure. Nowadays, there is a
unified web site qcmethod.org as the original source of information, with publications and
the most important download section. Under the download section the QC code is available
written in Fortran90 by the Tadmor and Miller. On the other hand, BD/A method was not
used that much as a practical tool (apart some application to carbon nano tubes by Xiao
and Belytschko), it was more used for the theoretical testing of different aspects of coupling
and MS modeling in general. However the method is from the very beginning extended to
dynamics, dealing with spurious wave reflections in the transition from the atomic to con-
tinuum domain. There is no unified web site as for QC method, but there are examples like
libmultiscale.gforge.inria.fr.

Adaptivity strategy

Original QC method is in essence an adaptive FE approach, and adaptivity is intrinsically in
the formulation in QC method. BD/A method was initially assumed as approach to couple
two different models. However, the described evolution associated with the goal oriented
error estimate theory, with the strong mathematical foundations, improved the method so
that it is equal if not better compared to the QC method in the sense of model adaptivity. In
particular, the choice where to place the fine and where to remain with coarse scale model, and
how to provide the appropriate evolution of that region is still the most important question.
More precisely, the BD/A method adaptivity is driven by the goals algorithm, controlling
the model refinement with respect to the any chosen quantity of interest. In QC method
non-locality criterion is based on a significant variation in the deformation gradient (no other
criteria). In very recent contributions the model adaptivity is being combined with optimal
control theory and shape optimization allowing size and shape of the zone of interest to be
automatically determined (or controlled in the sense of the error in the quantity of interest).

6 Numerical examples with model adaptivity

The idea of model adaptivity described in the previous chapters is shown schematically in
the following table for the simplest 1D case. Even though this procedure is similar to a
mesh refinement (especially for the QC approach), the main goal is to address the model
comparison that allows us to substitute the continuum model with the atomic one.

8CB hypothesis is satisfied only for simple lattice structures. However there is an extension of CB rule
[65,66].
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QC BD/A

As described in QC section adapting pro-
cess advances by selecting new atoms as rep-
atoms/nodes in the area where deformation
gradient changes severely. This procedure is
illustrated for the 1D scheme below.

The idea in the BD/A based methods is to
adapt i.e. switch from continuum to atom-
istic model cell by cell in order to deliver
accurate results regarding the selected QOI.
The overlap region has to be reconfigured.

...

- rep-atom - atom driven

  by continuum

- selected to

  be rep-atom

...

- fully atomistic

  model

- atom in

  overlap

- FE node

We present further some numerical examples that can clearly demonstrate the model adaptiv-
ity for the BD/A based coupled model. The accuracy of chosen quantities of interest (QOI)
is used as the measure of the model adaptivity performance. Contrary to QC method, there
are many candidates for local QOIs, and the best choice certainly depends on the problem on
hands. In the examples the follow, the quantities are selected for the sake of overview: Q1 -
displacement of the rightmost node, Q2 - L2 norm of displacement error in overlapping zone,
Q3 - mean strain in the overlapping zone, Q4 - L2 norm of strain error in overlapping zone,
Q5 - stress difference between neighbouring bonds. Next to QOIs, some other parameters
of the model ought to be selected selected, and properly adapted. These parameters are
divided in two groups. The first one pertains to the shape i.e. size of the overlap along with
the size of the FEs for continuum domain. The second group concerns the size of the fine
scale (particle) domain i.e. to issue where to place the overlap.

6.1 Adapting model topology - FE and overlap size

In this example, we demonstrate the influence of the model topology on the accuracy of QOIs
Q1 . . . Q4. The accuracy improvement is performed in the simple, chainlike (1D) problem
as in Fig. 7 (see Section 4 and [44]). Two parameters are taken into consideration for the

...

...

...

. ..

k1

la

lb

lc
le

l0

-atom

-FE node
k2

  F  

-pad atom

symmetry
k2

k2

1p2p 1 2 3

Figure 7: 1D coupling BD/A based model scheme with the symmetry BC on the left end of
the atomistic domain.

topology adaptation: the size of the FE (le), and the size of the overlapping zone (lb). In
extension, local (only k1) and nonlocal (k1 and k2, see Fig. 7) types of interaction are selected
in the atomistic domain and taken as the third parameter.
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Parameter 1: the size of the FE le

For the local, non-interpolated case of the model problem the solution of the full molecular
and coupled model show no error in the mentioned QOIs with the variation of the parameter
le. On the other hand, for the case of interpolated coupling within the local interaction in
Ωa, the error in the QOIs exists and it is shown in the Fig. 8 with respect the variation of
the parameter le. In the analysis of the influence of parameter le upon the QOIs, the other
parameter (the size of the overlapping zone) is kept constant (lb = 16l0 = cst.). On the
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Figure 8: Local interaction in Ωa with FE size le as a parameter. Quantities of interest Q1,
Q2, Q3 and Q4 are shown on plots denoted as a), b), c) and d), respectively.

Fig. 8 a) the relative error in Q1, the displacement of the end node, is given as

er,d = (un − uexn )/uexn , (27)

where un and uexn is the displacement of the rightmost node and the exact value for the
displacement, respectively. Note that in the examples presented herein, the exact values
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refer to the fully molecular (or particle) solution. On the Fig. 8 b) relative L2 norm of the
displacement error in the overlapping zone is given as

eL2,d =

√∑
i∈Ωb

(di − dexi )2√∑
i∈Ωb

(dexi )2
, (28)

where di and dexi are atom displacement solution (∀i ∈ Ωb) for the coupled model and the
exact solution, respectively. The relative error in Q3, the mean strain in the overlapping
zone, is given on Fig. 8 c) as

er,ε̄ =
(ε̄− ε̄ex)
ε̄ex

, (29)

where ε̄ and ε̄ex are the mean strain in overlapping zone and exact mean strain, respectively.
Likewise, on the Fig. 8 d) relative L2 norm of the strain error in the overlapping zone is given
as

eL2,ε =

√∑
i∈Ωb

(εi − εexi )2√∑
i∈Ωb

(εexi )2
, (30)

where εi and εexi are strain solution (∀i ∈ Ωb) for the coupled model and the exact solution,
respectively.

Similarly, the same analysis is performed with the non-local interaction in atomistic do-
main. The results are shown in the Fig. 9 indicating the same tendency as for local interaction
with the bigger error. Note that for all the plots in Figs. 8 and Fig. 9 the errors in QOIs
drops down to zero as the size of the FE decreases to lattice constant being le = l0. This
result is rather logical, since decreasing the FE size for the interpolated coupling case we
approach the non-interpolated case (see Fig. 6) where no error occurs, as already mentioned
above.

Parameter 2: the size of the bridging zone lb

The FE size is varied here together with the size of the bridging zone, as in Fig. 10 a), keeping
FE size equal to overlap size (le = lb as in Fig. 10 a)). This is because if the size of the FE
is kept constant with the variation of the lb (see Fig. 10 b)) then the influence of the number
of the FE in the bridging zone is notable (as studied in the section above). For the local,
non-interpolated case of the model problem, the solution of the full molecular and coupled
model show no error in the mentioned QOIs with the variation of the parameter lb. The same
goes for FE size as parameter. For the case of interpolated coupling, the error in the QOIs
is shown in the Fig. 11 with respect to the variation of the parameter lb, only for the simpler
case of local interaction. Note that the diagrams a) and c) on Fig. 11 show that the error in
displacement of the end node and the error in mean strain drops with the increase of the lb.

6.2 Adapting the position of the overlap

In this section the parameter for adapting the coupled model is the position of the overlap
zone with respect to the strain gradient caused by distributed load or by hypothetical defect.
Actually, the position of the overlap is directly related to the fine scale model size, that is to
the question pertaining to the size of the fine-scale model.
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Figure 9: Nonlocal interaction in Ωa with FE size le as a parameter. Quantities of interest
Q1, Q2, Q3 and Q4 are shown on plots a), b), c) and d), respectively.

Model with distributed load

A model with the distributed load spreading in the particle domain is chosen to analyse
the influence of the overlap position on the accuracy of the certain QOIs. Three different
configurations are considered as shown in Fig. 12. The two limiting cases, one where the
distributed load is completely in the atomistic domain (spreading also in the overlap called
case 3)) and the other with distributed load only in atomistic domain but not in overlap
(denoted as case 1)). Case 2) concerns configuration(s) between. The error in QOIs Q1 and
Q2 versus mentioned three cases is plotted on Fig. 13. Not quite surprising, the presented
results show better accuracy in terms of selected QOIs as the particle size is increased (i.e. as
the distributed load is further from the overlap). Furthermore, QOI Q5 representing stress
difference between neighbouring bonds is taken as the control variable to adapt the fine scale
size. The relative error in Q5 is defined as

er,σ = (∆σex −∆σ)/∆σex, (31)
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Figure 10: Options for the study of the influence of the bridging zone size parameter. a)
le = lb and b) le = cst.

where ∆σex and ∆σex is the exact stress difference and the one obtained from coupled model,
respectively (see Fig. 14 a)). Stress difference is obtained as ∆σ = |σi − σi+1|, i.e. the
difference of stress (piece-wise constant) in the neighbouring bonds. Results of the relative
error in stress difference of the leftmost atom in the overlap versus the position of overlap is
presented in Fig. 14 b). The results show that the error in terms of stress QOI decreases with
the increase of the size of fine scale model. Clearly, when the strain gradient, caused by the
distributed load, is in fine scale model completely the error in stress QOI does not exist. This
QOI provides a very good local refinement criterion. We note in passing that such a QOI,
apart from being a good refinement criteria, can be related to the often mentioned ghost
forces problem. Thus, choosing this QOI Goals algorithm can be used to iteratively adapt
coupled model to increase the coupling quality i.e. ghost forces. This is more important for
complex interatomic potential with non-local interaction, which is the subject of forthcoming
research.

Model with defect

Next, a model with the defect is analyzed. This defect is modeled as the sudden stiffness
change (see Fig. 15 a)) which occurs inside the particle domain. Problem is similar as the
distributed load but with a more severe strain gradient. According to the adaptive scheme
in Fig. 15 b) the fine-scale model size is increased. Not surprisingly, adapting the model in a
way that the defect (severe strain gradient) is included in fine scale model, reduces the error
in QOIs as can be seen in Fig. 16.

7 Conclusions and perspectives

In the consideration where nano-scale effects are important, the reference solution can be
obtained by using the full atomic model relying upon interatomic potentials to provide the
results of interest. However, due to the complexity of engineering problems and the cor-
responding scales that appear in realistic problems, explicit modeling of all with only the
atomic degrees of freedom will very likely never be feasible. Thus, one must reduce the size
of the problem by multiscale strategies (MS) that selectively removes most of the degrees
of freedom by homogenized continuum formulation in order to make the problem solution
tractable.

In this survey, we have discussed the salient features, similarities and some recent devel-
opments in the most frequently used strategies that selective reduce the number of degrees
of freedom, BD/A and QC methods. In the references related to the BD/A MS methods
authors usually concentrate on the atomistic-to-continuum coupling performance. Thus, se-
lective removing of degrees of freedom i.e. model adaptivity is neglected. The QC method is
based on adaptive approach, thus being an exception and the reference for comparison in this
review survey. The evolution of the BD/A method from atomistic-to-continum coupling to
adaptive MS method is presented, as well as the literature regarding error estimation theory
which parallels the development.

The general idea of model adaptivity is demonstrated on few numerical examples. The
presented examples deal with the simplest 1D case, and they should not be used to quan-
tify computational efficiency or the limits of adaptive criteria (tolerances). The idea was,
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Figure 11: Local interaction in Ωa with size of Ωb (lb) as a parameter. Quantities of interest
Q1, Q2, Q3 and Q4 are shown on subplots a), b), c) and d), respectively.

rather, to illustrate several useful choices for the parameters to adapt. Likewise, the choice
of functional defining quantities of interest is not fully exhaustive. Different choices of the
parameters and the quantities of interest made herein are used in order to illustrate that they
remain problem dependent.

Further perspectives of the BD/A method development is related to the implementation
of the complex multi-body potential which enables more realistic description of the discrete
model. In many such case, the complex potential is even more computationally demanding
as elaborated in the Section 2, which additionally justifies using the MS strategy. The use
of this kind of potentials enables modeling of inelastic behavior and localized failure at the
nano-scale. Equally, those potentials are able to describe the behavior of ’living’ material in
life science. Both of this issues are presently very important in the technical and biomechanics
research domain (e.g. see Kojic et al. [37, 38]).
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Figure 12: Three cases of the position of the bridging zone with respect to the distributed
load 1) distributed load (q) not in overlap, 2) q partially in overlap and 3) q on all atoms,
completely covering the overlap.
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Figure 13: Local interaction in Ωa with position of distributed load as a parameter (for L2
and H1 coupling, see eq. 24). Quantities of interest Q1 and Q2 are shown on plots a) and
b), respectively.
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Figure 14: a) stress plot for the model that for the model that needs refinement. The stress
difference for the coupled model and referential, particle model are shown, and b) relative
error in stress difference of the leftmost atom in the overlap versus the position of overlap.
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Figure 15: Modeling of defect by the sudden spring stiffness drop located on the left end a),
and characteristic cases regarding the overlap position (d0) with respect to the defect radius
(Rdef ) used to illustrate adaptive process b).

1 2 3 4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

interface position regarding defect centar

L
2
n
o
rm

o
f
d
is
p
.
er
ro
r
in

Ω
b
,
e
L
2
,d

Local interaction, strict and interpolated coupling of type L1 and H2\ with linear weight

 

 

strict H1 = strict L2

interpolated L2

interpolated H1

Figure 16: Local interaction in Ωa with position of the defect (d0) as parameter. QOI Q2 is
shown for the four variants of coupling (strict, interpolated, L2 and H1)
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