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Finite-size neutrally buoyant particles in a channel flow are known to accumulate at
specific equilibrium positions or spots in the channel cross-section, if the flow inertia
is finite at the particle scale. Experiments in different conduit geometries have shown
that while reaching equilibrium locations, particles tend also to align regularly in the
streamwise direction. In this paper, the force coupling method was used to numerically
investigate the inertia-induced particle alignment, using square-channel geometry. The
method was first shown to be suitable to capture the quasisteady lift force that leads to
particle cross-streamline migration in channel flow. Then the particle alignment in the flow
direction was investigated by calculating the particle relative trajectories as a function of
flow inertia and of the ratio between the particle size and channel hydraulic diameter. The
flow streamlines were examined around the freely rotating particles at equilibrium, re-
vealing stable small-scale vortices between aligned particles. The streamwise interparticle
spacing between aligned particles at equilibrium was calculated and compared to available
experimental data in square-channel flow [Gao et al., Microfluid. Nanofluid. 21, 154
(2017)]. The new result highlighted by our numerical simulations is that the interparticle
spacing is unconditionally stable only for a limited number of aligned particles in a single
train, the threshold number being dependent on the confinement (particle-to-channel size
ratio) and on the Reynolds number. For instance, when the particle Reynolds number is ≈1
and the particle-to-channel height size ratio is ≈0.1, the maximum number of stable aligned
particles per train is equal to 3. This agrees with statistics realized on the experiments of
[Gao et al., Microfluid. Nanofluid. 21, 154 (2017)]. It is argued that when several particles
are hydrodynamically connected moving as a unique structure (the train) with a steady
streamwise velocity, large-scale hydrodynamic perturbations induced at the train scale
prohibit small-scale vortex connection between the leading and second particles, forcing
the leading particle to leave the train.

DOI: 10.1103/PhysRevFluids.3.114302

I. INTRODUCTION

The experiments of Segre and Silberberg [1] shed light on the fact that neutrally buoyant particles
experience cross-streamline migration in a parabolic flow if the flow inertia is finite at the particle
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FIG. 1. Scheme showing the possible focusing positions of particles on four spots in the cross-section of a
square channel (light blue spheres) and their alignment in the streamwise direction (darker blue). Z indicates
the flow direction. X and Y are the directions parallel to the walls. In the simulations particles are placed in the
symmetry plane with respect to the X direction.

scale. The dipole interaction with the quadratic part of the flow is responsible of the particle
migration. Theoretical computation of the resulting lift force and its dependence on the flow inertia
has progressed slowly over decades [2–5]. Understanding this phenomenon opened a new field of
applications with the development of microfluidics, where separation or detection of microparticles
is operated by hydrodynamic focusing like flow cytometry [6], single-cell encapsulation [7], and
cell diagnostics [8]. It can be especially practical in the sense that external fields (like electrical,
magnetical) or membranes are avoided.

In more recent experiments, particles were found to accumulate preferentially at equilibrium
positions that depend on the conduit cross-section. The accumulation region consists of a ring
in a tube flow and of spots at the center of channel faces in square or rectangular ducts as
recently reported [9–12]. It has been also observed that, in addition to the existence of equilibrium
positions in the cross-section, particles tend to become ordered or evenly spaced in the streamwise
direction (so-called trains are formed) [8,13–17]. These observations were obtained in several flow
geometries. A sketch of particles assembled in the form of a streamwise train is illustrated in Fig. 1
in the case of square-channel flow.

These particle assemblies originate from the interaction, in shear flow, of particle pairs at
finite-flow inertia in the presence of the walls. The experimental observations (usually by optical
techniques) of particle trains suggest that at the end of pair interactions, an equilibrium interparticle
(streamwise) spacing is reached. This spacing varies like Re−1/2

p (Rep being the particle Reynolds
number defined at the end of the introduction), as it was obtained in tube and later in square-channel
flows [13,17]. Neutrally buoyant particles transported by shear flow induce local streamline reversal
at finite inertia [18]. As the interparticle spacing in the train structures decreases with the flow
inertia, it was first suggested by Matas et al. [13] that the train formation is related to the flow
induced by one particle in finite-inertia shear, as a particle causes the reversal of streamline
direction, but a second particle following such a streamline is cut off from receding by the wall.
The two-dimensional (2D) pair dynamics was later investigated by Yan et al. [19] in wall-bounded
shear (linear) flow. The authors revealed that the particle pair can reach a stable equilibrium or limit
cycles at finite inertia, depending on the streamwise boundary conditions.

Nevertheless Lee et al. [20] have measured interparticle spacings in channel flow, at different
downstream positions of the channel and plotted histograms. Interestingly, the peak in interparticle
spacing seemed to continuously shift to larger distances further downstream. The authors noted that
this shift becomes noticeable after particles travel long distances of order hundred times the channel
height and attributed this to residual viscous repulsive interactions.
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We show in this paper that particles assembled in the streamwise direction due to finite-flow
inertia reach stable interparticle spacings if a small number of particles is involved. However the
apparently long-lived trains become unstable if a large number of particles are aligned, in which
case the leading particle leaves the train. The corresponding dynamics seems to be very slow. This
observation is made possible by simulating the full dynamics of a few particles aligned along the
flow direction on a single spot in the square channel and very long simulation domains to avoid the
effect of periodic boundaries in the flow direction or the distant interaction between different trains
at different spots. We also show that the maximum size of a stable train depends on the operating
conditions that can be gathered under two dimensionless numbers: the particle confinement and the
Reynolds number. The particle confinement is defined as the ratio between the particle diameter dp

and the channel hydraulic diameter H . The Reynolds number describes the competition between
inertial and viscous forces, either at the channel scale, Re = UH/ν (the so-called channel Reynolds
number), or at the particle scale Rep = Re ∗ (dp/H )2 (particle Reynolds number). U is the average
channel flow velocity and ν is the kinematic viscosity.

The paper is organized as following. The numerical method is described and validated in Secs. II
and III. These two sections are included to assess the relevance of the force coupling method for
the simulation of inertia-induced particle migration and alignment. The reader can skip these two
sections if not interested in numerical details. In Sec. IV, stable particle assemblies are investigated
close to equilibrium. The train formation process and the stable train properties are described as
a function of the Reynolds number and of the number of aligned particles. Instability of particle
alignment is observed as soon as a large number of particles are aligned in the flow direction. The
paper is ended with a discussion (Sec. V) on the possible driving mechanism.

Note that regarding the particle size, for notation convenience and comparison with other
theoretical and experimental frameworks, the particle radius a is used in Sec. II, in some places
in Sec. III, and in the Appendix. The particle diameter dp is exclusively used starting from Sec. IV.

II. NUMERICAL METHOD FORMULATION

The description of the numerical method can be found in Ref. [21]. It is rewritten in this paper
before the validation section, for the sake of completeness. Direct numerical simulations of single-
phase flows are performed by using the code JADIM for an incompressible Newtonian fluid [22].
The unsteady three-dimensional (3D) Navier-Stokes equations discretized on a staggered grid are
integrated in space using the finite volume method. All terms involved in the balance equations are
written in a conservative form and are discretized using second-order centered schemes in space.
The solution is advanced in time by a second-order semi-implicit Runge-Kutta/Crank Nicholson
time-stepping procedure, and incompressibility is achieved by correcting the pressure contribution,
which is the solution of the Poisson equation.

Numerical simulations of particle trajectories and suspension flow dynamics are based on
multipole expansion of momentum source terms added to the Navier-Stokes equations (namely,
force-coupling method as formulated in Refs. [23,24]). Flow equations are dynamically coupled to
Lagrangian tracking of particles. The fluid is assumed to fill the entire simulation domain, including
the particle volume. The fluid velocity and pressure fields are solutions of continuity Eq. (1) and
momentum balance Eqs. (2) and (3):

∇ · u = 0, (1)

ρ
Du
D t

= −∇p + μ∇2u + f (x, t ), (2)

fi (x, t ) =
Np∑
n=1

Fn
i �[x − Yn(t )] + Gn

ij

∂

∂xj

�′[x − Yn(t )], (3)
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where u is the fluid velocity, and ρ and μ are, respectively, the density and dynamic viscosity of
the fluid. The body force distribution f (x, t ) in the momentum balance Eq. (3) accounts for the
presence of particles in the flow. It is written as a multipole expansion truncated after the second
term. The first term of the expansion called the monopole represents the force Fn that the particle
exerts on the fluid, due to particle inertia, external forcing, or particle-to-particle contact forces
[Eq. (4)]. The second term, called dipole, is based on a tensor Gn sum of two contributions: an
antisymmetric part is related to external torques applied on the particle, and a symmetric part that
accounts for the resistance of a rigid particle to deformation by ensuring zero average strain-rate
inside the particle volume, Eq. (5):

Fn = (mp − mf )

(
g − dV n

dt

)
+ Fn

ext, (4)

Sn
ij (t ) = 1

2

∫ (
∂ui

∂xj

+ ∂uj

∂xi

)
�′[x − Yn(t )]d3x = 0, (5)

where mp and mf are, respectively, the mass of the particle and that of the fluid in the region
occupied by the particle. The finite-size particle is accounted for by spreading the momentum source
terms around the particle center Yn using a Gaussian spherical envelope, one for the monopole
�(x) = (2πσ 2)−3/2e(−|x|/2σ 2 ) and another one for the dipole �′(x) = (2πσ ′2)−3/2e(−|x|/2σ ′2 ). The
widths of the Gaussian envelopes, σ and σ ′, are set with respect to the particle radius a such
that the settling velocity and the hydrodynamic perturbation generated by a particle in a shear
flow are both exactly matched to Stokes solutions [σ = a/

√
π and σ ′ = a/(6

√
π )1/3] for a single

particle.
The particle translation and rotation velocities are obtained from a local weighted average of

the volumetric fluid velocity (respectively, rotational velocity) field over the region occupied by the
particle [Eqs. (6) and (7)]:

V n(t ) =
∫

u(x, t )�[x − Yn(t )]d3x, (6)

�n(t ) = 1

2

∫
[∇ × u(x, t )]�′[x − Yn(t )]d3x. (7)

Particle trajectories are then obtained from numerical integration of the equation of motion as in
Eq. (8):

dYn

dt
= V n. (8)

This modeling approach allows calculating the hydrodynamic interactions with a moderate com-
putational cost. For a neutrally buoyant particle, the monople and the antisymmetric contribution to
the dipole are stictly zero. Only the symmetric part of the dipole (Stresslet) allows us to account for
the interaction between the particle and the shear flow. Eight grid points per particle diameter are
usually sufficient to correctly capture this interaction.

The method has been validated in the limit of vanishing particle Reynolds number [23,24]. It has
later been extended to the case of finite-flow inertia at the particle scale, i.e., Rep = O(1) [25,26].
Loisel et al. [15] have shown that the Stresslet components of a single particle placed in a linear
flow compare very well with DNS measurements, up to particle Reynolds number equal to 5 [27].
Additional validation tests with a single particle in quadratic flow are presented in the next section
and in the Appendix.

As for the interaction between two spheres in a linear flow, Yeo and Maxey [25] have shown
that the FCM gives the right relative particle trajectories at Rep = O(1). When two particles are
initially placed in the shear plane (perpendicular to the vorticity direction), their relative trajectory
remains in-plane, and it is open or reversed depending on the initial shift in the shear direction (δy),
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FIG. 2. Slip velocity (left panel) and migration velocity (right panel) vs. particle position Y/H for Re =
13 (triangles) and Re = 39 (squares) with particle size dp/H = 0.06. The solid black curve shows the law
proposed by Ref. [31]. The vertical dotted line indicates a distance from the wall equal to the particle radius.
The horizontal dashed line in left panel represents the Faxen correction.

of the lagging particle with respect to the leading one. The bifurcation between the two types of
trajectories is close to the one found in LBM simulations [28]. The off-plane spiraling interaction
is less well captured when the gap between particle surfaces is smaller than 0.1dp; however, the
amplitude of the relative velocity is very small in that case, and it does not play a significant role in
the system studied in this paper (particles in the same shear plane).

III. VALIDATION OF THE NUMERICAL METHOD

At very low Reynolds number, a small neutrally buoyant spherical particle follows the flow
streamlines. Near a wall, both the translational and rotational particle velocities are smaller than
the local fluid flow velocities [29]. However, the particle does not experience a wall-normal motion
for reversibility reasons. If the flow is slightly inertial at the particle scale, the neutrally buoyant
particle experiences lift perpendicular to the flow streamlines, in the presence of shear, the intensity
and direction of the lift depending on the flow configuration, and on whether the particle is free to
rotate or not. In channel flow, the interaction of the particle Stresslet with the curved background
flow profile induces a lift force oriented toward the channel walls when the particle is located near
the central region [2]. This force is enhanced by flow inertia. When the particle is very close to
the wall, the particle slip is large. The particle slip in the presence of shear near a wall leads to
a lift force oriented toward the high velocity region (as computed for instance by Cherukat and
Mclaughlin [30]). Hence, there is an equilibrium position, between the flow center and the walls,
where the particle is transported force-free. The equilibrium position is closer to the channel walls
when the flow inertia increases as it was demonstrated theoretically in channel flow, first by Ref. [4]
up to Re = O(100) and later by Ref. [5] up to Re = O(1000), assuming pointlike particles.

The validation tests shown here were realized in square-channel flow. Periodic boundary
conditions were used in the flow direction (Z) and no slip at the walls (in X and Y directions). The
ratio of the particle diameter to channel height was dp/H = 0.06 and 0.11. The channel length in
the streamwise direction was equal to 28.8dp, where dp is the particle diameter. The grid distribution
was set to ensure 8 grid points per particle diameter. The fluid flow was initially set to the steady
solution of square-channel flow, and a constant pressure gradient was applied in the z direction. The
particle was seeded at different Y locations in the midplane (X = H/2).

A. Particle freely moving in square-channel flow

In the first test, the particle was moving freely during approximately 10a2/ν, before its streamwise
and wall-normal velocities were recorded (a is the particle radius). The streamwise slip and
wall-normal particle velocities are shown in Fig. 2. The two velocity components are compared,
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at channel Reynolds number Re = 13 and 39, to theoretical expressions for a pointlike particle in
2D Poiseuille flow (see the summary on this in Asmolov et al. [31]). For the smallest particle size,
the effect of the flow three-dimensionality on the particle motion is expected to be relatively small.
The slip velocity is normalized by aGm, where the shear rate Gm = 4Um/H is calculated from the
maximum velocity in the channel center Um. The particle slip is not impacted by the flow inertia
in this range of Reynolds numbers. The agreement with the theoretical velocity as derived from
Goldman et al. [29] is acceptable near the wall. However, the slip does not vanish in the channel
center because of the flow curvature (this effect on the particle motion was written formally in
Faxén laws at low Reynolds numbers). The slip magnitude is roughly twice of the Faxén correction
4Uma2/(3H 2). The same observations were reported in the studies of Loisel et al. [15] and Asmolov
et al. [31], realized in 2D Poiseuille flow, using numerical simulations based on FCM and Lattice
Boltzmann, respectively. As for the migration velocity (scaled by aGm and Rep/6π ), its trend is
similar to the prediction based on a pointlike particle at low but finite Reynolds number [3]. The
shift to the left of the numerical points is a joint consequence of the flow being 3D instead of 2D
and to the underestimation of the hydrodynamic interaction between the particle and the wall. We
note that this underestimation seems to be only effective on the wall-normal direction and not on
the slip parallel to the wall.

B. Lift force computation

The force coupling formulation allows solving the mobility problem, i.e., the particle is displaced
and rotated under a given forcing. A neutrally buoyant particle is not subject to any external forcing.
The direct calculation of the force pushing the particle to move across the flow streamlines is
not possible, because unlike other particle-resolved methods, the force coupling method does not
guarantee the no-slip boundary condition on the particle surface, and therefore the surface traction
cannot be directly calculated. Instead, an iterative algorithm is set to compute the wall-normal force
that should be applied on a particle placed in a shear flow, to prohibit the particle motion in the
wall-normal direction.

After recording the velocities of the freely moving particle in the previous test, a force was then
applied on the particle, only in the wall-normal direction, in a way that ensures zero migration
velocity. This force was applied to the particle motion through Fn

ext in Eq. (4). Its initial value was
set to zero. The force was then updated at the iteration k from the value at iteration k − 1, according
to a penalty method: Fext(k) = Fext(k − 1) − λ[6πμaV (k − 1)]. The iterations were stopped when
V (k) became very close to zero. λ is an arbitrary constant, which should be chosen not very low to
reduce the time needed for convergence and not very high to avoid numerical instability. Note that
the computation of this force was first realized in the case of a particle placed near a wall in a linear
flow. The details of this test are written in the Appendix. The similarity between this force applied
to prohibit the particle wall-normal motion and the theoretical predictions of the quasi-steady lift
force, led us to call it “lift force” in this paper.

Figure 3 shows the evolution of the lift force calculated Fl/(ρU 2
ma4/H 2) as a function of the

particle position, in the midplane (X = H/2) of the square-channel flow. The particle radius a is
used in the force scaling. The negative sign indicates a force pushing the particle away from the wall.
The numerical results, at different particle diameters and channel Reynolds numbers, are compared
to the theoretical work of Hood et al. [32]. Their work was developped in square-channel flow
geometry, assuming that the wall falls in the inner layer perturbed by the particle (weak inertial
stresses compared to viscous stresses). The inertial lift force in the x and y directions was shown
to depend on the particle radius in the form Fl/(ρU 2

ma4/H 2) = C4 + C5a/H , where C4 and C5 are
constants that depend only on the location of the particle. For the lowest Reynolds number (Re = 13)
and smallest particle size, the numerical force obtained by the FCM is in good agreement with the
profile established in Ref. [32]. Scaling the force by ρU 2

ma4/H 2 is consistent in the channel center,
but not near the channel wall. Still at Re = 13, the dimensionless lift is lower when larger particle
size is used. Note that, when the flow conditions are unchanged, the larger the particle the stronger
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FIG. 3. Lift force scaled by ρU 2
ma4/H 2, acting on a particle in a square-channel flow versus the position

of the particle in the y direction (at x = H/2) for different Re. The red and blue symbols are the lift force
from our simulation for particle diameter dp/H = 0.06 and 0.11, respectively. The symbols are for Re = 120
(circles), 38 (squares), and 13 (triangles). The corresponding Rep is between 0.05 and 1.5. The red dashed
and blue solid lines are obtained from the solution of Ref. [32] for particle diameters dp/H = 0.06 and 0.11,
respectively.

is the impact of truncating higher order terms in the multipole expansion (quadrupole, sextupole...).
When the Reynolds number is increased, the force calculated by the FCM deviates with respect to
this scaling (it becomes lower), in a way coherent with the theoretical analysis based on matched
asymptotic expansions [4,5].

IV. PARTICLE ALIGNMENT IN CHANNEL FLOW

Here and in the following sections, the particles are freely transported by a square-channel flow,
unless otherwise stated. We considered particularly the square-channel flow configuration to discuss
the stability of particle alignment, because in the conditions of this paper, the equilibrium positions
are stable and well established (at the midplane of the four channel walls) and trains have been well
characterized by the experiments of Gao et al. [17]. The trajectory of a single particle migrating
toward an equilibrium spot (as sketched in Fig. 1), using the same numerical method, can be found
in Ref. [33]. When particles are randomly seeded in the simulation domain, they experience first
a lateral motion, i.e., perpendicular to the velocity isocontours, then cross-lateral migration, i.e.,
parallel to the closest wall, till they reach equilibrium positions [33]. Both processes are slow,
the former stage being faster than the following one. The establishment length scale of particle
migration is quite large [O(1000H ) at Re = O(100)], and the lower the Reynolds number the larger
the establishment length is. To focus on the streamwise ordering process, the lateral and cross-lateral
migration stages are bypassed by initially placing the particles near their equilibrium spots (in the
midplane x = H/2). During the simulations, the particles were observed to remain in this symmetry
plane.

The operating conditions consist of a channel Reynolds number O(100), a particle confinement
dp/H in the range 0.077–0.14, and a solid volume fraction less than 1%. The flow was resolved
using a uniform mesh grid with 78 × 78 grid points in the square cross-section, to ensure 8 grid
points per particle diameter for a reasonable numerical accuracy. We carefully verified that the box
length L does not impact the results shown here (29 � L/dp � 60, dp being the particle diameter).

The streamlines around a single particle are first shown, since they contribute to the alignment
process. Then particle relative trajectories are used to show stable assemblies when small number

114302-7



GUPTA, MAGAUD, LAFFORGUE, AND ABBAS

FIG. 4. Zoom on the flow streamlines in the (YZ) frame of a particle at equilibrium in a square-channel
flow. The black region illustrates the particle (stretched for convenience). Rep = 0.5 (left), 1.5 (center), and 3.0
(right). The two stagnation points (indicated with crosses) get closer to the particle surface as Rep increases.
The fore-aft asymmetry increases with Rep . Red arrows show the flow direction.

of particles is involved (two or three) and unstable assemblies as soon as the number of particles
becomes “large.”

A. Streamlines around a single particle at equilibrium

Figure 4 shows the flow streamlines in the (YZ) frame attached to a single particle located at an
equilibrium spot, for different Reynolds numbers at particle confinement dp/H = 0.11 (the images
are stretched and zoomed for format convenience). The saddle points both in front of and behind
the particle take place in the presence of shear as soon as the flow inertia is finite at the particle
scale [34]. Whereas the reverse streamlines induced by a particle in a channel flow are open under
Stokes flow condition, they are of spiralling nature at finite inertia [20]. The stable spirals act as
attractor regions. The centers of these forward and backward spirals are closer to the particle surface
as Rep increases and the size of this attractive region becomes wider. The two horizontal lines added
to these figures show that the gap (in the y direction) between the forward and backward attractors
also increases with Rep, in relation with the symmetry breakup at finite-flow inertia.

B. Stable particle assembly

When two particles are found close to each other near an equilibrium spot [as illustrated in
Fig. (1)], they are located in-plane, i.e., in the plane parallel to the flow and to one wall-normal
direction. Studies dedicated to the interaction of a particle pair in a linear flow at finite-flow
inertia [19,28], show that the relative trajectory of the lagging particle with respect to the leading
one is open (respectively, reversed) when the shift δY in the position of the particle centers in the
wall-normal direction is large (respectively, small).

Figure 5 shows the relative trajectory of a leading particle (particle 2) with respect to the lagging
one (particle 1) in the square-channel flow at dp/H = 0.11. The trajectory of particle 2 is trapped
in a basin of attraction, nearby the forward attractor of particle 1, following a spiralling motion. At
Rep = 0.5, the trajectory of particle 2 with respect to particle 1 is similar to the streamlines around
the freely rotating particle 1 (when isolated). The first part of the relative trajectory (in Fig. 5) is of
reversing nature since δY = YP 2 − YP 1 is initially small and negative. However, after reversing,
particle 2 does not go off to infinity. The inertia-induced lift induces cross-streamline relative
motion, which is coupled to the trajectory reversal leading to an equilibrium spacing between the
particles. This type of interaction of two finite Rep spheres, is an additional aspect compared to
the open and reversed trajectories in linear flow. It involves the quadratic nature of the flow and
the proximity of the particles to the wall. When Rep increases, particle 2 converges faster toward
equilibrium, the convergence pathway depending on the initial position of particle 2 with respect
to particle 1. Figure 5(b) (Rep = 1.5) shows that if the relative position is chosen carefully, the
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(a)

(b)

(c)

(d)

FIG. 5. Panels (a), (b), and (c) contain the pair-dynamics in a two-particle train for Rep = 0.5, 1.5, and
3.0, respectively. The trajectories of the leading particle with respect to the lagging one are overlaid on the
streamlines around a single particle. The initial position of the center of the leading particle is shown with
asterisks. Red arrows show the flow direction. (d) Flow streamlines (in the frame of leading particle) around a
stable pair of particles obtained for Rep = 3, showing a stable small recirculation connecting both particles.

leading particle converges toward the basin of attraction even if the initial distance is as far as 9dp.
At equilibrium, the vortex in front of the lagging particle and the one behind the leading particle
connect to form one close vortex as shown is Fig. 5(d).

We realized the same type of simulations with three particles. Figure 6(a) shows the particle
trains at equilibrium for three different Rep at dp/H = 0.11. The streamwise position of the lagging
particle is set arbitrarily to zero for this figure. The interparticle spacing and average train distance
from the wall both decrease when Rep is increased. These trains are not perfectly aligned in the
flow direction, but they are relatively inclined as shown in Fig. 6(b). This has been also observed
experimentally by Matas et al. [13] at higher Rep in a tube flow, while the inclination is absent at
smaller Rep. The evolution of the train inclination with the Reynolds number is coherent with the
gap between forward and backward stagnation points shown in Fig. 4, which increases with Rep.
In addition, it can be noted that the spacing between the leading and second particle is 10% greater
than between the second and third (lagging) one in all cases.

The distance between the train barycenter and the closest wall yT , as well as the average
interparticle distance at equilibrium l are plotted in Fig. 7. Most of the simulations were realized
with square-channel flow and dp/H = 0.11. When Rep is increased, the train gets closer to the
channel wall (similarly to the single particle) and the average interparticle distance decreases. The
decrease of the average distance with Rep, observed similarly in the experiments [13,16,17], is
consistent with the fact that the basin of attraction is closer to the particle surface, when the particle
Reynolds number is increased (Fig. 4). Figure 7 contains also information on particle assembly
when the number of particles per train is increased. At a given Rep, the train gets slightly closer
to the wall when the number of particles per train increases. The average interparticle distance
seems to slightly decrease as well. The train statistics are compared to the experimental ones of
Gao et al. [17], which were realized in similar conditions. The trend of the trains statistics with
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FIG. 6. (a) Steady configuration of three-particle trains at different Reynolds numbers in the (YZ) plane.
Particles in the same train have the same color and are linked with lines for eye guidance. Rep = 0.5 (red),
1.5 (blue), and 3 (black). The z coordinate of the lagging particle in a train is set arbitrarily to 0. The velocity
profile is represented on the right of the figure. (b) Plots representing the center positions of the three-particle
trains at different Reynolds numbers [same colors as in (a)].

respect to Rep is similar. There is a uniform shift between experimental and numerical results.
The discrepancy of train positions at equilibrium is almost suppressed when the mesh resolution is
twice finer. However, the shift persists for the average interparticle spacing. This issue deserves to
be further delved into in the future if precise information on the stability of particle alignment is
needed. It requires the computation of the interaction between several particles in channel flow, at
identical operating conditions, using different available (at least numerical) methods.

C. Unstable assembly

When a fourth particle is seeded close to the three-particle train of Fig. 6 (Rep = 1.5), either in
front of or behind the train, the front particle is lifted up, leaving a stable three-particle train behind
it. The relative trajectory of a fourth particle placed in front of a three-particle stable train is shown
in Fig. 8(a). Several initial configurations led to the same result. Even if the leading particle tends
to follow the reversed streamlines in a first stage, it does not converge toward the attractor. The
departure of the front particle can be found in Fig. 8(b) from the evolution of the spacing between
the front and second particles (in black lines). A video sequence of particle positions in the channel
for this case is shown in the supplementary material [35]. The particle that leaves the train reaches
an equilibrium position yP located slightly further from the wall than the position yT of the train left
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FIG. 7. Properties of stable particle trains. (a) shows the distance between the train barycentre and the
closest wall yT . (b) shows the average interparticle distance l. Red Squares, upward-pointing triangles, and
black plus symbols are for 2-, 3-, and 4-particle assembly in square channel with dp

H
= 0.11. Blue downward-

pointing triangles and black circles are for 3- and 4-particle assembly in square channels with dp

H
= 0.14 and

0.08, respectively. Black cross is for 4-particle in rectangular channel ( dp

W
= 0.09). Black stars are from the

experiments of [17] realized in square channel flow with dp

H
= 0.11. The magenta square and cyan triangle

are obtained for 2- and 3-particle trains, using a twice finer numerical resolution in a square channel with
dP /H = 0.11.

behind and is thus slightly faster. Since we used periodic boundary conditions in the flow direction,
the particle that leaves the train from the front joins it from behind, the new leading particle leaves
in turn, and so on. The same observations were noted for trains with the larger number of particles.

Note that this instability starts to be discernible after the particles travel a long distance
downstream (i.e., ≈30 − 40H in the case of Fig. 8). It is probably for this reason that [20]
have observed a shift of the distribution of interparticle distances toward larger values in the
measurements at different distances from the channel inlet, without observing any change in
interparticle spacings within images of dimensions of O(10H ). To detect the eventual departure
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FIG. 8. (a) Trajectories of the fourth particle placed in front of a stable three-particle train at Rep = 1.5
and dp/H = 0.11 for different initial positions. These trajectories are relative to the (new) leading particle
of the remaining stable three-particle train (at Rep = 1.5). The trajectories are overlaid on the streamlines, in
(YZ) plane. Panel (b) contains the evolution of the relative particle spacing in the train (�Z). Black, red, and
blue lines correspond to the distance between front-second, second-third, and third-fourth. The Z coordinate
corresponds to the streamwise position of the front, second, and third particles for each curve, respectively.

of the leading particle from the train structure by optical techniques, it would be required to use
either two synchronized cameras at different streamwise positions or a camera frame following a
long-lived train that contains a large number of particles.

V. DISCUSSION ON THE DESTABILIZING MECHANISM

The maximum number of stable particles in a train can be tuned by changing the particle
confinement and/or the fluid inertia, as summarized in Fig. 9. Note that to change dp/H while
keeping constant the particle Reynolds number, the channel Reynolds number should be changed
accordingly. It is clear from Fig. 9 that both Rep and confinement play an important role. For
rectangular channel cross-section, the confinement is defined as the ratio between the particle
diameter and the channel height or width, whichever is smaller (setting the largest velocity
gradients). The number of particles stable in a train increases when the flow inertia is increased
and when the particle size is decreased. It is striking to note that the maximum length of stable train
structures is approximately equal to the channel hydraulic diameter (H for square channels).

The numerical results encouraged us to revisit the statistics of Gao et al. [17] realized on
experiments with particle size dp/H = 0.11 in square-channel flow. The histograms of the number
of aligned particles in a single train exhibit a very sharp peak at Np = 3, for Rep ranging from
0.1 to 3 and for particle concentration between 0.02 and 1%. The percentage of trains constituted
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FIG. 9. A diagram showing the maximum number of particles in a stable train for different particle
Reynolds number Rep and confinement dp/H in a square-channel flow, as predicted from the FCM simulations.

of three particles is shown in Fig. 10 as a function of the suspension concentration (defined as
the solid volumetric fraction). This figure shows that most of the trains are constituted of three
aligned particles at low concentration (φ = 0.08%). A longer train detected in the experiments (with
imaging techniques [17]) as such, might be the result of a transient alignment. As the concentration
increases, the percentage of three-particle trains decreases but remains dominant. The concentration
has the dual effect of both increasing the number of particles available for alignment and the
dispersive hydrodynamic interactions between them.

From these results, it seems that the particle assembly under finite inertia is a weakly coupled
system. The origin of particle alignment seems to result from a favorable vortex connection between
consecutive particles as illustrated in Fig. 5. The vortex generated behind the front particle interacts
with the vortex induced in front of the lagging particle, minimizing by that the fluctuating kinetic
energy (in a similar way to particles interacting in oscillatory fluid flows [36], as discussed by
Ref. [37]). However, the vortex connection does not seem to occur when the train exceeds a
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FIG. 10. Probability of finding trains with three aligned particles, obtained from post-processing the
experiments of Ref. [17], versus the suspension concentration. The probability is the highest at low concen-
tration. Different symbols are for different Rep: triangles, stars, and circles are for Rep = 0.12, 0.7, and 1.8,
respectively. These results are for dp/H = 0.11.
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(a) (b) (c)

FIG. 11. Plots of velocity streamlines relative to the front particle in the microchannel in the XZ plane for
(a) a single particle, (b) two-particle train, and (c) three-particle train at Rep = 1.5. Colored contours show
the streamwise velocity perturbation (subtracting the unperturbed channel flow from the instantaneous velocity
field) scaled by the average flow velocity. Flow direction is from left to right.

certain number of aligned particles. Velocity perturbation induced by the individual particle Stresslet
in bounded shear flow decays as 1/r2 at a distance from the particle center r < H . Since the
train morphology does not fundamentally change when the number of particles increases, i.e.,
interparticle spacing does not decrease significantly when the train length increases, hydrodynamic
repulsion between pairs cannot be the driving mechanism. Visualizations of the flow perturbation at
the channel scale (Fig. 11) reveal that the assembled particles move like a unique coherent structure,
with a perturbed outer region that expands as the number of aligned particles increases. Sequences
of snapshots for the velocity perturbations reveal that the vortex connection starts first between the
lagging and the second to last particle, etc., until reaching the front of the train. It is likely that the
hydrodynamic perturbation induced by the large structure when its length reaches the channel scale,
prohibits the vortex connection between the leading particle and the second one, pushing the front
particle to move forward.

Nevertheless, the observed departure of the leading particle, for instance in the simulations
corresponding to Fig. 8, does not depend drastically on the accuracy of the computed hydrodynamic
perturbation induced by each particle. Since the Stresslet terms are the essential ingredients to
capture the hydrodynamic interaction of the neutrally buoyant particles with the shear flow, we
tuned the Stresslets terms to test whether this has an impact on the train stability. When we realized
simulations with constant-value Stresslets (obtained from the converged three-particle train), instead
of updating the Stresslets to maintain the zero-average strain rate inside the particle volume [Eq. (5)],
very similar relative trajectories were observed. This suggests that the conditional stability described
in this paper is a robust phenomenon that does not exclusively depend on the accuracy of the
interactions at small (particle) scales.

A stability analysis, hard to realize on this system, would probably help to rationalize the effect
of increasing the particle number on the stability of particle alignment. Here we limit our argument
to the energy budget. At a given Reynolds number, when the number of particles assembled in a
train increases, the slip velocity between the train and the ambient fluid flow increases. Although the
neutrally buoyant particles move force-free in the flow, the slip velocity induces energy dissipation.
The ratio between the energy dissipated by the train and the energy of the flow pushing forward the
leading particle is plotted in Fig. 12. This ratio increases with the particle number and confinement,
and it decreases with the Reynolds number. Figure 12 suggests that the particle assembly should
not cost above a threshold (around 2.5% of the flow energy on the particle scale) for the system to
remain stable.

VI. CONCLUDING REMARKS

After the validation of the numerical method, we gave some insight on the dynamics of a pair of
neutrally buoyant particles that tend to align in the streamwise direction and form trains in channel
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FIG. 12. The ratio between the drag force on particle train and forward pressure force applied by the fluid
on the front particle. The symbol legend is idem to Fig. 7.

flows. All the results were obtained after the inertial migration stages were accomplished, where
the particles were located close to stable equilibrium spots and in one shear plane. The simulations
were realized in domains long enough to eliminate any influence from the streamwise periodic
boundaries. Trains of particles revealed to be slightly closer to the channel walls than a single
particle at equilibrium, and therefore they had a slower streamwise velocity. The trains were slightly
inclined with respect to the flow direction (lifted forward) when the Reynolds number increases, as
already observed in experiments realized in tube flow [13]. The trains were unconditionally stable
only in a limited range of Reynolds numbers and particle diameter-to-channel height ratios. When
the train length increases, the hydrodynamic perturbation induced by the train structure, is likely
stronger than the perturbation induced by the Stresslets at the individual particle scale, pushing.

Our numerical results, obtained using a truncated multipole expansion, agree qualitatively
well with the experiments [17] realized within the same range of operating conditions. Future
investigation on the interaction between one and several pairs of spheres near channel walls are
required to assess quantitatively the bifurcation between stable and unstable alignment. Moreover,
the conclusions on the particle assembly are valid for moderate particle size and when the solid
volumetric concentration is low. When the particle size is almost half of the channel height,
additional sets of equilibrium positions take place alternating on opposite walls, like in Refs. [16,38].
This situation could not be examined by the Force Coupling Method as implemented here, mainly
because of the truncation of the multipole expansion used in Eqs. (1)–(3). When the suspension
volumetric concentration is not negligible (φ � 0.5%) hydrodynamic dispersion is expected to
decrease the alignment potentiality in a way complex to predict.
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FIG. 13. Left Panel: Numerical calculation of the wall-normal force (blue open circles) applied on a particle
near a wall in linear flow, and comparison with different theoretical predictions. The force is scaled by μaVslip.
The different theories are from Saffman [39] (blue asterisks), Cherukat and Mclaughlin [30] (red upward-
pointing triangle), Lovalenti in the Appendix of Ref. [30] (green square) and Magnaudet [40] (magenta right-
pointing triangle). Rigth Panel: streamwise particle slip velocity versus Rep . The red circles are from FCM
simulations. The lines are the prediction of the slip velocity from Goldman et al. [29] at yp = 1.54 and 2.35a,
respectively.

APPENDIX: PARTICLE NEAR A WALL IN A LINEAR FLOW

The validation of the wall-normal force calculation was realized first by placing a neutrally-
buoyant particle of radius a near the bottom wall of a plane Couette flow. The domain size was 10.6a

in the flow x and wall-normal y directions, and 8.1a in the spanwise z direction. The computational
grid was uniform, and the mesh size was �x = a/4. Periodic boundary conditions were used in
the x and z directions. The bottom wall was stationary and the top wall moving with VW = γ̇ H ,
where H is the distance between the walls and γ̇ is the shear rate. The particle was placed at a given
position, and iterations were realized to find the force required to prohibit particle motion in the
wall-normal direction.

An example of the results is shown in Fig. 13(a) obtained by placing the particle at yP0 = 1.66a

near the bottom wall. This figure shows the increase of the wall-normal force with the Reynolds
number defined in linear flow as Rep = γ̇ a2/ν. The force is scaled by the viscous drag, μaVslip,
where Vslip is the particle slip velocity (in the streamwise direction) with respect to the unperturbed
local fluid flow, and μ is the dynamic fluid viscosity. Note that Vslip is not known a priori but
calculated from the simulation result at equilibrium, upon completion of the iterative procedure
used to obtain the force. Figure 13(b) shows Vslip scaled by the wall velocity as a function of Rep. It
is compared in the same graph with the Stokes flow limit from [29] at the two wall-normal positions
yp = 1.54 and 2.35a reported in Table 2 of their paper. Note that in our simulations the particle
position yp, initially equal to 1.5a in the simulations at different Rep is found between 1.66a and
1.7a at the end of the iterative procedure. The calculated slip is close to the Stokes flow prediction.
Its amplitude decreases slightly with the Reynolds number. This is not an inertial effect. It is rather
related to the fact that the steady particle position is not the same.

Several theoretical works allowed determining the lift force applied on a particle in a linear flow
assuming no fluid acceleration at the particle scale. In this paper, we compare the numerical results
with that of Refs. [30,39,40]. The expressions of the lift force obtained by the different works are
listed below. All of them are scaled with μaVslip and take into account the proximity of the particle
to the wall, except the expression of Saffman [39] obtained in unbounded shear flow. Figure 13
shows that the numerical results agree very well with the theories that take into account the wall
presence.

The expressions of the lift force resulting on a finite-size particle in a linear flow are given in
this Appendix, from different sources in the literature. The first one does not take into account the
presence of the wall. The last three contain the parameter κ which is the ratio between the particle
position with respect to the closest wall and the particle radius:
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(1) Eq. (3.11) of Saffman 1965 [39], with a correction of 1
4π

published in the erratum:

Fl = 81.2

2π
a
√

γ̇ /ν = 6.46
√

Rep. (A1)

(2) Eq. (4.2) of Cherukat and McLaughlin 1994 [30]. This work also accounts for the distance
between wall and particle; κ = a/yP0 and valid in the regime yP0 � min(Ls, Lγ ), where Stokes
length Ls = ν/Vslip, Saffman length Lγ = (ν/γ̇ )1/2 and dimensionless parameter �γ = γ̇ a/Vslip:

Fl = ResI = Rep(A�γ
−1 − B + C�γ ), (A2)

where Res = aVslip/ν; A = 1.7631 + 0.3561κ − 1.1837κ2 + 0.84516κ3, B = 3.24139/κ +
2.676 + 0.8248κ − 0.4616κ2, and C = 1.8081 + 0.879585κ − 1.9009κ2 + 0.98149κ3.

(3) Eq. (A 14) of Cherukat and McLaughlin 1994 [30], which is derived by Lovalenti. We
nondimensionalized Eq. (A 14) by (ρνaVslip ):

Fl = 18π

32
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16
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]

(4) Eq. (17) of Magnaudet 2003 [40], which is valid for spherical bubble, droplet and particle.
It is valid for the object close to the wall. For particles, in case of viscosity ratio λ → ∞, the
nondimensionalized lift force is

Fl = π

4
Res (3/2)2

[
(1 + 11/8�γ

25/3) − 11

6
�γ (κ−1 + 0.84)

]

= 9π
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(κ−1 + 0.84)

]
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