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Characterization of the microbiome
associated with in situ earthen materials
Alexis Simons1,2* , Alexandra Bertron2, Jean-Emmanuel Aubert2, Christophe Roux3 and Christine Roques1

Abstract

Background: The current increase in public awareness of environmental risks is giving rise to a growth of interest
in the microbiological safety of buildings. In particular, microbial proliferation on construction materials can be
responsible for the degradation of indoor air quality that can increase health-risk to occupants. Raw earth materials
are still widely used throughout the world and, in some cases, are linked to heritage habitats, as in the southwest
of France. Moreover, these building materials are currently the subject of renewed interest for ecological and
economic reasons. However, the microbial status of earthen materials raises major concerns: could the microbiome
associated with such natural materials cause disease in building occupants? Very few analyses have been performed
on the microbial communities present on these supports. Characterizing the raw earth material microbiome is also
important for a better evaluation and understanding of the susceptibility of such materials to microbial
development. This study presents the distribution of in situ bacterial and fungal communities on different raw earth
materials used in construction. Various buildings were sampled in France and the microbial communities present
were characterized by amplicon high-throughput sequencing (bacterial 16S rRNA gene and fungal ITS1 region).
Bacterial culture isolates were identified at the species level by MALDI-TOF mass spectrometry.

Results: The major fungal and bacterial genera identified were mainly associated with conventional outdoor and
indoor environmental communities, and no specific harmful bacterial species were detected on earthen materials.
However, contrary to expectations, few human-associated genera were detected in dwellings. We found lower
microbial alpha-diversity in earthen material than is usually found in soil, suggesting a loss of diversity during the
use of these materials in buildings. Interestingly enough, the main features influencing microbial communities were
building history and room use, rather than material composition.

Conclusions: These results constitute a first in-depth analysis of microbial communities present on earthen
materials in situ and may be considered as a first referential to investigate microbial communities on such materials
according to environmental conditions and their potential health impact. The bacterial and fungal flora detected
were similar to those found in conventional habitats and are thought to be mainly impacted by specific events in
the building’s life, such as water damage.

Keywords: Earthen building materials, High-throughput sequencing, Microbial diversity, Built-environment
microbiome, Bacterial communities, Fungal communities
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Background
Earthen building materials have been widely used
throughout the world, and continue to be used in many
countries, with nearly a third of the world’s population
living in this type of construction [1]. Raw earth is
mainly used in Africa, China and the Middle East, but
there are also many heritage habitats throughout Europe,
including in certain regions of France [2]. The environ-
mental impact of building materials is an important
issue and is becoming the object of renewed interest in
connection with ecological challenges. In addition to
heritage matters, earthen materials present several puta-
tive solutions to tackle these environmental issues: they
promote a natural regulation of the indoor humidity [3]
and their ecological impact [4] and cost [5] are low.
Earthen materials can also contain plant fibres and ag-
gregates (straw, hemp, etc.), which enhance the thermal
insulation and decrease the risk of cracking during the
drying step of the manufacture of the material [6]. How-
ever, the addition of cellulose and/or lignin may induce
greater sensitivity to fungal proliferation [7]. Few prolif-
eration issues have been reported on earthen materials
but some visible mould developments have been de-
tected in certain situations (water-related accident, poor
ventilation during the few first days of drying, etc.) [8,
9]. These observations could raise questions about the
conditions of fungal development on earthen materials.
The problems linked to the indoor air quality and mi-

crobial proliferation are indeed very important, with 10
to 50% of buildings contaminated by moulds in Europe,
North America, Australia, India and Japan [10]. Humans
spend more than 80% of their time inside buildings [11],
and so are strongly exposed to the indoor air [12]. Under
specific environmental conditions i.e. high humidity [13,
14], microorganisms are highly likely to develop on con-
ventional building materials. The microbial growth
within dwellings leads to a release of harmful particles
(volatile organic compounds, toxins, parietal com-
pounds, spores, etc.) in the indoor air and may induce
health issues for the occupants, from asthma and allergy
to ocular and pulmonary irritations and infections [15].
The identification of microorganisms present on the sur-
face of construction materials in buildings is an import-
ant challenge that must be taken up if the risks of
proliferation are to be better apprehended.
The microbial flora composition of conventional con-

structions was first characterized by cultural approaches.
Studies on indoor air and dust microflora have shown
the major presence of Ascomycota and, more precisely,
the genera Cladosporium, Aspergillus and Penicillium
[16, 17], for the fungal communities, and Micrococcus,
Staphylococcus and Bacillus for the bacterial ones [18,
19]. The culturable part of microbial diversity is esti-
mated at a very low percentage, however (1%) [20],

which depends on the environment or the microorgan-
isms studied, with, for example, a lower frequency of
cultivability for Basidiomycota [21] or Gram negative
bacteria [22].
The use of DNA and, more specifically, of metabarcoding

methods, to study microbial ecology has deepened the ob-
servable diversity [23, 24]. Molecular barcodes, such as dif-
ferent regions of the 16S rRNA gene for bacteria or internal
transcribed spacer (ITS) regions for fungi, allow a great mi-
crobial diversity to be detected in indoor environments
[25–27]. Bacterial and fungal indoor communities have
been characterized for various types of building, such as
dwellings [26, 28, 29], university classrooms [30] or child-
care facilities [31], highlighting the main factors that drive
microbial composition in buildings. For instance, Adams
and co-authors [32] investigated the microbiome of indoor
surfaces across standardized residences and revealed the
major impact of the outdoor fungal flora on the indoor
ones, rather than the influence of the room sampled or the
human activities. This predominance of outdoor fungi in
the buildings, in particular for the indoor air, has been con-
firmed in other studies [31]. Major fungal taxa detected by
metabarcoding in buildings are related to Ascomycota (i.e.
Cladosporium, Aspergillus, Penicillium, Alternaria, Fusar-
ium, Aureobasidium, Epicoccum, Phoma) and Basidiomy-
cota (i.e. Cryptococcus, Wallemia) [25, 28, 29, 31–34].
Variations in indoor air and dust fungal microbiome may
be also observed with respect to various factors such as
geographical location [32, 34], building environment
(urban/rural) [35], or seasons [32, 36]. In contrast, outdoor
bacterial flora have a very little impact on the bacterial
communities detected in indoor air, dust and surfaces,
which are essentially linked to bacteria associated with
humans (i.e. genera Micrococcus, Staphylococcus, Propioni-
bacterium, Streptococcus) [26, 30, 37, 38]. By comparing the
bacterial flora of surfaces in several rooms with the micro-
biome of their inhabitants, Lax et al. [27] showed that the
floras were more similar within a single house than be-
tween two rooms with the same function in two different
houses. Studies on bacterial and fungal communities of
conventional buildings and construction materials, such as
plaster and concrete, are increasing, which is not the case
for earth-based construction materials.
Although raw earth is still used for construction in the

present day, few data exist on the microbial flora associ-
ated with this material. Our study thus aimed to provide
a first overview of the microorganisms present in situ on
earthen construction materials in France. Our objectives
were i) to characterize and make an inventory of the mi-
croorganisms present on earthen materials used in
buildings according to their location and use, and ii) to
evaluate the influence of additional plant fibres in
earthen materials, or of room use, on microbial commu-
nities. This study will provide better knowledge of the
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microorganisms present and probably of those able to
proliferate on earthen materials, as well as highlighting
the impact of certain factors on the composition of these
bacterial and fungal communities.

Methods
Study sites and sample collection
Volunteer building owners were contacted for this study.
A total of 12 buildings with earthen walls were included
(See Additional file 1: Table S1), resulting in 76 samples
of earthen materials. Three different sampling campaigns
were carried out: from October to November 2015, in
July 2016 and from October 2016 to January 2017. The
buildings were located in the south-west (9 sites) and
east of France (3 sites). Four combinations of material
composition and location conditions were set up as fol-
lows: i) earthen materials without vegetal aggregates – 6
dwelling sites, noted E-D; ii) earthen materials with
vegetal aggregates – 5 dwelling sites, noted V-D; iii)
earthen materials without vegetal aggregates – 3 non-
dwelling sites, noted E-ND; iv) earthen materials with
vegetal aggregates – 3 non-dwelling sites, noted V-ND.
All materials sampled were in normal moisture condi-
tions at the time of sampling (i.e. no visible proliferation
due to water accumulation, air relative humidity (RH)
between 50 and 65%), and the only site with previous
mould proliferation less than 1 year before sampling had
returned to a dry state without visible mould a few
months previously.
Samples on the surface of earthen walls were collected

using sterile scalpels. Small areas (4 cm2) were scratched
(sampling areas were located at different heights if pos-
sible i.e. 40 cm to 190 cm from the floor), in order to ob-
tain 2 to 3 g of material per area (dwellings - hall,
kitchen, bedroom: 4 and 6 areas per wall; non-dwellings
- barn, cellar: 1 to 2 areas per wall). Part of the sampled
materials from 5 sites was used for cultural isolation,
while samples from all sites were stored at − 80 °C until
DNA extraction.

Cultural isolation and identification
Microbial sampling on earthen materials had been opti-
mized previously [39]. Briefly, 1 g of sampled materials
was mixed with 10 mL of recovery medium (PBS + 5%
Tween 80) and shaken at 300 rpm for 30 min (MaxQ
4000 Agitator - Thermo Scientific, Waltham - Massa-
chusetts, U.S.A.). Suspensions were diluted, deposited on
culture media and incubated at different temperatures
(bacteria: Tryptone Soy Agar (TSA) – 30 °C). Identifica-
tions of bacterial isolates were carried out using
MALDI-TOF mass spectrometry, which is currently
used for the identification of clinical and environmental
strains [40, 41]. A sample of a bacterial colony was
homogeneously deposited on a MALDI target position

(MSP 96 polished steel BC target). The deposit was then
coated with 1 μL of 70% formic acid [42]. After drying,
1 μL of IVD HCCA matrix (Bruker, Billerica - Massa-
chusetts, U.S.A.), reconstituted with 250 μL organic solv-
ent solution (acetonitrile 50%, water 47.5%, TFA 2.5%)
(Sigma-Aldrich, Saint-Louis - Missouri, U.S.A.), was de-
posited on its surface and left to dry. The internal con-
trol BTS (Bacterial Test Standard; E. coli, Bruker) was
added on a MALDI target position. The protein profiles
of each spot were analysed by MALDI-TOF BioTyper
(Bruker, Billerica - Massachusetts, U.S.A.). The acquired
spectrum was compared with the reference spectra con-
tained in the general database IVD MALDI BioTyper,
version 4.0(5627). Identification results were accepted
when the spectrum congruence score threshold was
greater than or equal to 1.75.

DNA extraction, PCR and sequencing
Genomic DNA extraction was performed on 250mg of
material with the ZymoBIOMICS DNA Miniprep kit
(Zymo Research, Irvine – California, U.S.A.) according to
the manufacturer’s instructions. For PCR amplification,
the primers used for bacteria were 343F (5′-ACGGRA
GGCAGCAG-3′ [43]) and 784R (5′-TACCAGGGTA
TCTAATCCT-3′ [44]) targeting the region V3 – V4 of
the 16S rRNA genes. For fungi, the internal transcribed
spacer (ITS) region 1 was targeted with primers (5′-
CTTGGTCATTTAGAGGAAGTAA-3′ [45] and 5′-
GCTGCGTTCTTCATCGATGC-3′ [46]). PCR amplifica-
tion was carried out with the MTP Taq DNA polymerase
(Sigma-Aldrich, Saint-Louis - Missouri, U.S.A.) under the
following conditions: 5 min at 94 °C; 35 cycles of 30 s at
94 °C, 1min at 55 °C and 30 s at 72 °C; and 7min at 72 °C.
The efficiency of PCR amplifications was checked by elec-
trophoresis on agarose gel. In case of an absence of ampli-
fication, probably due to the presence of polymerase
inhibitors in extracts (such as humic acids or clay parti-
cles), dilution of one tenth to one thousandth of DNA ex-
tract restored amplification. Amplicons were purified on
Clean PCR beads (MokaScience, La Madeleine, France)
and their quality was checked with a Fragment Analyzer
(Advanced Analytical Technologies, Ankeny – Iowa,
USA). All samples were processed at the GeT-PlaGe plat-
form (Auzeville, France) for second PCR with Illumina
Miseq primers containing indexes, equimolar library prep-
aration and Illumina MiSeq 2 × 250 bp (San Diego – Cali-
fornia, U.S.A.) using the standard protocol.

Bioinformatics analysis
The following bioinformatic pipeline was used for both
types of amplicons. Raw reads were assembled with a
minimal overlap of 10 bp using the MOTHUR v.1.35.1
software [47]. Assembled reads with a length of less than
100 bp were discarded. Detection of chimera was
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performed with UPARSE, implemented in USEARCH
v10.0.240 [48]. Remaining reads were clustered at 0.97.
In order to keep only the ITS region, the border regions
5.8S in 5′ and 28S in 3′ were removed using the Hidden
Markov Model (HMM) [49]. Operational taxonomic unit
(OTU) sequences were assigned with the USEARCH
global command based on the UNITE database [50] for
ITS1 reads and on the RDP [51] database for 16S rRNA
gene ones. Singleton OTUs were removed. Unassigned
OTUs containing 50 reads or more were re-aligned with
the non-redundant GenBank database with BLAST 2.7.0
[52]. ITS1 libraries contained 3,231,180 reads, split
among 3654 OTUs, and 16S rRNA gene libraries con-
tained 2,116,341 reads forming 14,080 OTUs.

Community analyses
Statistical analysis was performed using R v3.4.1. Each li-
brary was normalized by rarefaction to the smallest
number of reads across all libraries for each region. After
normalization, a total of 2,085,468 reads for ITS1 se-
quences and 761,775 reads for 16S rRNA gene se-
quences were contained in 3544 and 13,174 OTUs,
respectively. The α-diversity was calculated for each
sample using the Shannon index (log e base) [53], and
site index means were compared with a Mann-Whitney
test. Fungal and bacterial Shannon indices were com-
pared with the Spearman correlation test. The β-
diversity was calculated regarding the mean relative
OTU abundance by site and a Bray-Curtis distance
matrix [54] was generated for 16S rRNA gene and ITS1
libraries using the vegdist command of the vegan pack-
age v2.4–4 [55]. Non-metric multidimensional scaling
(NDMS) was used to represent the distance matrix, with
lower than to 0.2. Permutational multivariate analysis of
variance (PERMANOVA) was performed using the ado-
nis command (vegan) (9999 permutations). The Simper
test was used to determine the genera that contributed
most to differences in relative abundance at intra-site
and inter-group levels. Relative abundances of main taxa
were then compared with a Kruskal-Wallis test for the
comparison of sampling conditions and a Mann-
Whitney test for intra-site comparisons.

Results
Diversity of the microbial communities on earthen
materials
A total of 72 samples collected at 12 sites were success-
fully amplified and sequenced. Three thousand five hun-
dred forty-four fungal OTUs were identified across all
ITS1 libraries and assigned to 495 fungal genera. For
16S rRNA gene bacterial sequences, 13,174 OTUs were
detected, corresponding to 513 bacterial genera on all
the samples. Among all samples, the OTU average was
171 (range: 28–571) for fungal communities and 1007

(range: 117–2682) for bacterial ones. For the dwelling
sites, no difference of Shannon diversity index was ob-
served between earthen materials with or without plant
fibres, for either the fungal (mean: 2.84; range: 1.33–
4.47) or the bacterial (mean: 4.57; range: 1.52–6.9) com-
munities (Additional file 1: Figure S1). However, higher
fungal (mean: 3.16; range: 3.06–3.34) and bacterial
(mean: 5.26; range: 3.68–5.97) diversities were associated
with materials containing vegetal aggregates at non-
dwelling sites compared to raw-earth-only materials
(fungi: 1.78; 1.61–2.10) (bacteria: 3.37; 1.52–4.52). The
diversity of fungal and bacterial communities appeared
to be correlated to each other (Spearman test p-value <
0.05; rho: 0.44), which means that sites with a high fun-
gal diversity also contained a high bacterial diversity, and
vice versa.

Community structure of microbiome from earthen
materials
The ITS1 sequences were mostly assigned to Ascomy-
cota (76.51%) and Basidiomycota (18.59%), while 4.25%
were unassigned and other phyla corresponded to less
than 0.5% of the sequences. The main classes were
Dothideomycetes (33.05%), Eurotiomycetes (20.71%), Sor-
dariomycetes (15.52%), Wallemiomycetes (8.22%) and
Tremellomycetes (5.36%). The most abundant taxa are
reported in Fig. 1A. Cladosporium was the most wide-
spread genus (15.53%), and was detected with some
inter-site variability at all sampling sites. Genera de-
tected at the majority of sites were Wallemia (8.21%),
Aspergillus (8.18%), Fusarium (3.45%), Cryptococcus
(3.61%) and Alternaria (3.18%). Other genera were
prominently present at a few sites only, such as Phialo-
simplex (5.96%), Devriesia (2.35%), and Verticillium
(1.97%). The culture-based approaches were conducted
at 5 different sites demonstrating a low level of viable/
culturable moulds at sites where there had been no hy-
dric accident (< 102 CFU/g, data not shown).
Regarding the bacterial flora, the major taxa were: Actino-

bacteria (39.61%), composed of Actinobacteria (39.61%)
and Rubrobacteria (1.59%); Firmicutes (27.52%), composed
of Bacilli (26.35%) and Clostridia (1.16%); Proteobacteria
(9.97%), composed of Alphaproteobacteria (4.33%), Gam-
maproteobacteria (4.29%) and Betaproteobacteria (1.30%);
Bacteroidetes (1.76%), composed of Sphingobacteria (0.93%)
and Flavobacteria (0.61%). Bacillus (19.61%) and Arthro-
bacter (10.39%) were the predominantly detected genera
(Fig. 1B). Some others were mainly detected at several sites,
such as Actinomycetospora (7.95%) and Saccharopolyspora
(6.96%). As detected with metabarcoding approaches, bac-
terial isolates (104 to 106 CFU/g, data not shown) from sites
A to D mainly belonged to the genus Bacillus. MALDI-
TOF mass spectrometry was used to define the diversity at
the species level (See Additional file 1: Table S2). Other
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bacterial isolates were related to the soil environment
(Pseudomonas luteola and stutzeri, Solibacillus silvestris
and Streptomyces griseus) and potentially to the human
microbiome (Micrococcus luteus and Staphylococcus hae-
molyticus). The predominance of Gram positive genera
(87% versus 13% for Gram negative on assigned
OTUs) was observed by metabarcoding across all the
sampled buildings, leading to limited endotoxin risks.
Moreover, almost no mycobacteria were detected in
any of the samples.

Factors impacting microbial communities on earthen
materials
The distribution of fungal communities identified by
metabarcoding was compared by NMDS between the
two locations for the same wall composition, either on
raw-earth-only materials (Fig. 2A) or earth materials
with vegetal inclusions (Fig. 2B). The fungal profiles
were significantly different, with a slightly more pro-
nounced difference in the case of earthen-only supports
(PERMANOVA P < 0.05, R2 = 0.21) compared to sup-
ports including vegetal aggregates (PERMANOVA P <
0.05, R2 = 0.16). When sites with different material
compositions from the same location were compared,

fungal communities sampled in dwellings were not sig-
nificantly different (PERMANOVA P > 0.05) (Fig. 2C).
In the inter-site comparison, the same composition at
the dwelling sites led to similar overall relative abun-
dances. However, some predominance may be noted as
a greater abundance of Wallemia for sites E-D or Fu-
sarium and Verticillium for sites V-D (Fig. 1). In
contrast, samples from non-dwelling buildings (PER-
MANOVA P < 0.05, R2 = 0.28) (Fig. 2D) presented sig-
nificant differences.
Concerning bacterial communities, no significant

difference was observed when sites with the same con-
ditions were compared according to the location
(Fig. 3A & B; PERMANOVA P > 0.05). In contrast, dif-
ferences were observed between sites in the same loca-
tion conditions for support compositions of both the
dwelling (Fig. 3C; PERMANOVA P < 0.05, R2 = 0.15)
and the non-dwelling conditions (Fig. 3D; PERMA-
NOVA P < 0.05, R2 = 0.35), with a stronger effect in
the latter. Regarding the conditions of dwellings, some
trends suggest an effect of the composition on the
abundance of the genus Arthrobacter, which was more
detected on earthen walls with plant fibres, while the
genus Bacillus was more strongly associated with

Fig. 1 – Relative abundances of the major microbial taxa assigned by metabarcoding for the different locations and compositions. The relative
abundances of the major fungal (A) and bacterial (B) taxa assigned are represented according to the different sample conditions: i) earthen
materials without vegetal aggregates (E-D); ii) earthen materials with vegetal aggregates (V-D); iii) earthen materials without vegetal aggregates
(E-ND); iv) earthen materials with vegetal aggregates (V-ND). The following taxa were significantly different among the four sampling conditions
(Kruskal-Wallis p-value < 0.05): i) fungi – Acremonium, Alternaria, Aspergillus, Cladosporium, Cryptococcus, Libertasomyces, Penicillium, Phialosimplex,
Verticillium, Wallemia; ii) bacteria – Acinetobacter, Actinomycetospora, Arthrobacter, Exiguobacterium, Fictibacillus, Nocardioides, Saccharopolyspora,
Sphingomonas, Trichococcus. The following taxa were not significantly different among the four sampling conditions (Kruskal-Wallis p-value >
0.05): i) fungi – Coccodinium, Devriesia, Fusarium; ii) bacteria – Bacillus, Paenibacillus, Pseudonocardia, Rubrobacter.

Simons et al. Environmental Microbiome            (2020) 15:4 Page 5 of 11



earth-alone materials. However, inter-site variability
for the same composition and location conditions did
not lead to any significant variation in genera (Mann-
Whitney p-value > 0.05).

Intra-site variability of microbial communities
Microbial communities were not found to be
homogenous within samples from a given site (Add-
itional file 1: Table S3). At site A, differences were ob-
served between sample heights 190, 170, 150 and 70 cm
on the one hand and 120 and 100 cm on the other
hand. Some bacterial genera were significantly more
abundant within the 120 cm and 100 cm samples than
on the rest of the wall: the genera Promicromonospora,
Streptomyces, Arthrobacter and Paenisporosarcina were
almost absent from the 120–100 cm samples (relative
abundance < 1.03%) whereas their relative abundance
was higher than 1.8% on the rest of the wall (Mann-
Whitney p-value < 0.05). Similarly, samples from the
adobes at 160 and 110 cm at site D presented a differ-
ent flora from that of the joints at the same heights and
of the adobe and joint at 60 cm. The main part of the

wall had a high abundance of Saccharopolyspora
(47.52% ± 5.95%), Prauserella (10.45% ± 7.91%) and
Amycolatopsis (8.45% ± 0.65%), whereas these genera
were very scarce in adobe samples taken at 160 and
110 cm (relative abundance < 2%). This was counterba-
lanced by an abundance of Bacillus (34.43 ± 11.74%)
and higher diversity. The samples also mainly contained
Phialosimplex (94.76% ± 2.32%), indicating a probable
development of this mould on the material, while the
160 and 110 cm adobes had a much more varied flora
on their surface, including Cladosporium (23.28% ±
11.4%) and Wallemia (5.73% ± 6.75%). In addition,
intra-site variations through time were evaluated with
microbial communities analysed at sites sampled 1 year
apart, and appeared to be highly similar over time
(Additional file 1: Figure S2), suggesting a stability of
the microbial community composition on earthen
materials.

Discussion
As soil is considered as one of the largest reservoirs of
microbiological diversity [56], earthen materials are assumed

Fig. 2 – NMDS representations of the Bray Curtis distance matrices for fungal communities. Bray Curtis distance matrices of fungal communities
are represented using NMDS based on the different factors studied: i) dwellings vs non-dwellings, at E-D and E-ND sites (A) and V-D and V-ND
sites (B); ii) earth-only materials vs earthen materials with vegetal aggregates, with E-D and V-D (C) and E-ND and V-ND (D). p-value and R2 of
PERMANOVA test are indicated.
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to be colonized by a large biodiversity of microorganisms.
To date, few works have been performed to describe the
microbiome from such building materials, which have been
used over hundreds of years and in which interest is cur-
rently reviving. To address this question, samples were taken
within buildings without visual degradation in the aim of
characterizing the bacterial and fungal communities present
on the surface of earthen supports by using both metabar-
coding and cultural approaches.
The observed predominance of Ascomycota (76.51%)

in indoor communities was similar to results for samples
from other housing, particularly in indoor dusts [28, 34].
Most major taxa detected, such as Cladosporium, Asper-
gillus or Alternaria, had been identified in previous stud-
ies on fungal flora in human habitats by using high-
throughput sequencing [25, 28, 32, 34]. Regarding the
bacterial flora, a prevalence of Actinobacteria, Firmicutes
(mainly Bacilli) and Proteobacteria (mainly α and Υ-pro-
teobacteria) was observed on earthen materials.
Almost all abundant fungal taxa were associated with the

external environment, and also with the air (Cladosporium,
Aspergillus, Cryptococcus, Alternaria, Penicillium, etc.) [32].

In contrast to air-associated fungal taxa, those related to
the human microbiome (i.e. Malassezia sp., Rhodotorula
sp.) were detected at very low relative abundances. This
prevalence of outdoor air floras relative to other types in
the composition of fungal communities on indoor surfaces
has already been reported [25]. Similarly to fungal taxa, al-
most all main bacterial genera detected (Actinomycetospora,
Arthrobacter, Bacillus, Nocardioides, Paenibacillus, Rubro-
bacter, Sphingomonas) were ecologically associated with soil
and the outdoor environment [57–60], and some of them
were also identified in indoor environments, either in air-
borne particles and dust [30, 31] or on surfaces [26]. The
culture methods were employed in order to confirm which
genera were viable / culturable, and then which microor-
ganisms may be able to proliferate in conditions of high hu-
midity. Considering that identification at species level by
16S rRNA gene metabarcoding was not possible for some
genera, especially for Bacillus [61, 62], identification of bac-
terial isolates was performed by MALDI-TOF mass spec-
trometry [63, 64]. Cultural results were consistent with the
metabarcoding ones and confirmed the strong presence of
soil related bacteria. This method also revealed a large

Fig. 3 NMDS representations of the Bray Curtis distance matrices for bacterial communities. Bray Curtis distance matrices of fungal communities
are represented using NMDS based on the different factors studied: i) dwellings vs non-dwellings, with E-D and E-ND sites (A) and V-D and V-ND
sites (B); ii) earth-only materials vs earthen materials with vegetal aggregates, with E-D and V-D (C) and E-ND and V-ND (D). No significant effect
was observed regarding the location condition. p-value and R2 of PERMANOVA test are indicated.
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species diversity of Bacillus across all samples. However, a
bacterial flora on interior surfaces is usually associated with
human flora [27], regarding surfaces in contact with occu-
pants [26] or indoor air and dusts [30, 31, 65]. Lower phys-
ical contact with occupants than for other (horizontal)
indoor surfaces is to be considered for walls, and literature
about wall microflora is very sparse. Genera such as Micro-
coccus or Staphylococcus can be indicators of human flora
but were detected very little on earthen supports (relative
abundances < 1%). This low abundance of human-
associated genera was also observed in culture, with the
majority of isolates associated with the genus Bacillus. This
particular bacterial community structure for an indoor sur-
face could result from the presence of an initial high diver-
sity of soil microorganisms, limiting bacterial colonization
by microbial competition, combined with a potentially low
ability of human-associated bacteria to grow on raw earth.
Based on the average profiles per dwelling, no signifi-

cant impact of the presence of plant fibres in earthen
materials was observed on the diversity of fungal com-
munities. Despite the presence of plant fibres, which can
increase the development of some fungal species able to
degrade cellulose or lignin [7], these materials did not
appear to induce a greater microbial diversity, either
bacterial or fungal, under conventional environmental
conditions. However, the genera Fusarium and Verticil-
lium were more abundant at sites with plant aggregates.
These two genera are particularly present in soils, in-
cluding some phytopathogenic species [66, 67], and fi-
nally could have been brought in by the plant fibres
during the manufacturing process. Their survival on the
surface of the wall could have been promoted by vegetal
aggregates. Nonetheless, the presence of plant fibres in
earthen materials in a dwelling would not be a determin-
ing factor in the survival or development of specific fun-
gal flora under standard conditions (excluding water
damage). In contrast, non-dwelling buildings, exposed to
outdoor environmental conditions, may present signifi-
cant differences regarding the composition of the fungal
communities on their surfaces, depending on the pres-
ence or absence of plant fibre in the material.
The metabarcoding analyses revealed intra site

variation depending on the buildings studied. Some
sites had more dispersed and variable communities
within the different samples than other sites did, for
both bacterial and fungal flora. This heterogeneity
on the same wall can be explained by a particular
use or by the history of the dwelling, such as water
accidents or the use of the building over time
(opened or closed premises, agricultural activity -
such as the presence of animals or the storage of
agricultural materials - bringing moisture and hu-
midity, specific microorganisms, etc.) with a strong
impact on microbial communities [13, 68, 69]. Of all

the sites sampled in our study, only one presented
traces of mould proliferation, which was due to a
faulty drain several months before sampling. On this
site, the particular abundance of the fungal genus
Wallemia may have been a result of the previous
high humidity accident, as past proliferations on
building materials are observable despite remediation
of the buildings [70]. In addition, many differences
within microbial communities could be observed be-
tween different constructions. In the indoor environ-
ment, both fungal and bacterial floras were subject
to many external factors inducing variations. Flora
variations have previously been described regarding
the geographical location [35] and the sampling
period [25, 36, 38, 71]. Inter-site variation is a major
challenge for the study of an interior flora, which
often shows greater variability between buildings
than between locations sampled within the same
building [27, 38]. The incidence of such variations
was not investigated in our study as we focused on a
single campaign at 3 sites that differed in terms of
geographical location and season. However, sam-
plings 1 year apart performed on two sites suggested
a certain stability of microbial communities on
earthen materials over time for the same season,
which could be investigated with new sampling cam-
paigns across time. Another variable that could sig-
nificantly influence the type of flora present in
samples was the composition of the soil used as raw
material. Several physical-chemical parameters have a
direct effect on the structure of microbial communi-
ties present in soil [72] and possibly, by extension,
in the final materials.
Considering health hazards, some of the abundant fun-

gal genera detected belonged to potentially allergenic
categories, such as the filamentous fungi Cladosporium,
Aspergillus, Fusarium, Alternaria and Penicillium [73].
These genera are widely distributed in outdoor [32] and
indoor environments [34] but do not generally have a
detectable impact on the health of the occupants regard-
ing the microbial load. A significant “unconventional”
development of these microorganisms in a building (i.e.
due to water damage) – generally with a visible develop-
ment of mycelium and spores – can induce health issues
[13, 14]. In addition, few endotoxin producers, which
make up a large proportion of the bacteria involved in
indoor air quality degradation [74], were detected in
these supports. Most of the bacterial communities iden-
tified would therefore not imply specific risk to the oc-
cupants. The presence of this microbial diversity on
earthen construction supports could have interesting ef-
fects on the indoor air quality compared to the case of
conventional materials. A high density and diversity of
microorganisms at the surface of earthen materials
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would prevent the colonization and development of
other potentially harmful microorganisms, by occupying
the ecological niche or competing against each other.
Moreover, some studies have revealed that low microbial
diversity in indoor dust implies higher risks of childhood
asthma development [68, 75]. It is then tempting to
hypothesize that the dense and diverse microbiome asso-
ciated with earthen materials increases the safety of a
dwelling environment by limiting potential invasive
growth of pathogenic fungi and bacteria.

Conclusion
Our study gives a first glimpse at the supposedly large
diversity of the microbiome on raw earth materials,
which were poorly characterized until now. We can
already conclude that, although varied, the observed mi-
crobial diversity is lower than usually found in soil and
is strongly associated with the outdoor and indoor envi-
ronments. Bacterial communities, containing no specific
harmful species and being less human-associated than
communities in conventional building environments,
seem to colonize these supports. Surprisingly, the inclu-
sion of plant aggregates within earthen materials does
not induce significant changes in the indoor fungal com-
munity structures. Regarding the design of the study, the
major factors driving microbial diversity are the condi-
tion (indoor / outdoor) and the history of the materials
(previous high humidity accident, storage of vegetables,
etc.). These results highlight the possibility that the di-
versified and healthy microbiome found on earthen
building materials could lower the risk of development
of undesirable and harmful microorganisms.
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