

Using Augmented Reality to Stimulate Students and Diffuse Escape Game Activities to Larger Audiences

Anabela Estudante, Nicolas Dietrich

▶ To cite this version:

Anabela Estudante, Nicolas Dietrich. Using Augmented Reality to Stimulate Students and Diffuse Escape Game Activities to Larger Audiences. Journal of Chemical Education, 2020, 97 (5), pp.1368-1374. 10.1021/acs.jchemed.9b00933. hal-02542068

HAL Id: hal-02542068 https://insa-toulouse.hal.science/hal-02542068v1

Submitted on 14 Apr 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

USING AUGMENTED REALITY TO STIMULATE STUDENTS AND DIFFUSE ESCAPE GAME ACTIVITIES TO LARGER AUDIENCES

Anabela ESTUDANTE¹ & Nicolas DIETRICH²

6 1: Agrupamento de Escolas João de Deus, Faro, Portugal

7 2: Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA,
 8 Toulouse, France

9 ABSTRACT

10

1

2

3 4 5

11 In a world engaged in a perpetual race for progress, Augmented Reality (AR) is a new frontier 12 that has attracted much research attention in recent years. The generalization of 13 smartphones and the miniaturization and democratization of connected gadgets are leading 14 to new uses and new expectations. In this article, we provide an AR application to the 15 trending educational activity of escape games in order to diffuse AR to a large audience. As 16 the application of an educational escape game, which is a good tool to improve the 17 motivation and communication skills of students, requires considerable time for design, 18 manufacturing and operating, a numeric, mobile AR version is proposed here. For this 19 purpose, an original paper-based version of the scenario is presented, principally turning 20 around the Solvay Process for high-school/college audience. In this scenario, the students 21 are led to follow in the footsteps of a young Belgian physicist, Ernest Solvay. Through 22 enigmas, participants discover a secret room containing Solvay's secrets in Brussels. 23 Puzzles about the periodic table of elements, the CPK color code, chemical reaction 24 balancing, the notion of molar mass, the Solvay process, or the philanthropic conferences 25 organized by Solvay and the many other scientists involved are used to illustrate the 26 chemical process discovered. This scenario and the Leblanc process scenario have been 27 adapted to an AR experience with the open application Metaverse. Unlike conventional 28 escape game or escape lab activities, our AR escape games can be easily diffused to large 29 audience classrooms without the presence of any teacher being required and without any 30 systematic preparation. The advantages and limits of such tools are discussed. The feedback 31 received from students that participated in a test exercise with the tool corroborates the 32 increase of motivation through such activities.

33 **GRAPHICAL ABSTRACT**

34

35 KEYWORDS

- 36 General Public, Chemical Engineering, Collaborative / Communication / Puzzles / Games,
- 37 Reactions /History, Philosophy/ Inquiry-Based/Discovery Learning, Physical Properties,
- 38 Student-Centered Learning

39

40 INTRODUCTION

41 Augmented Reality (AR) refers to an expression coined in the early 1990s to describe a new 42 form of interaction between the user and a machine, based on the association of real 43 objects, derived from the user's environment, and virtual ones, i.e., created by the 44 computer. Reality is called "enhanced" because the machine superimposes a new layer of 45 information on this reality, intended to bring enriching elements to the user's environment. 46 AR is an interactive experience of a real-world environment where the objects that reside in 47 the real-world are enhanced by computer-generated perceptual information, including 48 visual, auditory, haptic and olfactory.

The earliest functional AR systems providing immersive mixed reality experiences for users were invented in the early 1990s, starting with the Virtual Fixtures system developed at the U.S. Air Force's Armstrong Laboratory¹. Commercial augmented reality experiences were introduced in entertainment and gaming businesses.

53 With the technological advances of recent years, including the democratization of 54 smartphones and tablets, AR has gradually become a reality, and its use has increased and 55 diversified². The presence of one or more cameras on these devices makes them particularly 56 suitable for contextualized use and inclusion in situations, the camera capturing the real 57 and displaying it on the screen of the device with other information. Today, this technology 58 has become common in some areas and applications have spanned commercial industries 59 such as education, communications, medicine, and entertainment. In education, content 60 may be accessed by scanning or viewing an image with a mobile device or by using 61 markerless AR techniques^{3,4}. For example, like Quick Response (QR) codes, it allows the 62 educator to encode information (text, URL) that is then accessed via a scanner connected to 63 a computer. In class, codes have begun to appear as a means of accessing space 64 enrichment. Thus, a student can scan a code displayed at a strategic location in the 65 classroom (on a resource, a dedicated corner, a book, etc.) and access virtual content such 66 as Nobel Prize winners⁵ or the periodic table of the elements⁶. Students can then access 67 resources made available by the teacher (instructions, procedures, readings aloud) by 68 simply scanning a code. Another use of augmented reality is related to the use of various 69 applications, including Aurasma (recently HP Reveal) and MirageMake⁷. These applications

allow the educators to set triggers in the real world. When the camera encounters one of these triggers, an action is launched on the screen: playing a video, bringing up a text, an image, link to an internet page, etc.

73 With the help of advanced AR technologies, the information about the real world 74 surrounding the user becomes interactive and digitally manipulated. Information about the 75 environment and its objects is overlaid on the real world. Nowadays, there are two types of 76 augmented reality commonly used on smart phones: markerless (adding of digital 77 information to the image on a cell phone camera based on the global positioning system, 78 such as GPS location) and markered (uses a physical reference point) ^{8,9}. Markered 79 augmented reality is especially useful for chemists because it provides an easy way to 80 connect information directly to a physical object, like a scientific instrument, or to place a 81 Web link on a sheet of paper or a book 10,11 . Recently, Augmented Reality has been used in 82 the laboratory¹², as instructions for analytical instrumentation design, enabling students to 83 see directly how the instruments that are in their own laboratory (flame atomic absorption 84 spectrometer, gas chromatograph-mass spectrometer, liquid chromatograph, and double-85 beam UV-vis)¹³, can be employed in chemical kinetics classes¹⁴ or organic chemistry 86 classes¹⁵ to perform a colorimetric titration¹⁶ or even for learning safety¹⁷.

87

88 Mobile games are particularly suitable for an escape game activity as such activities were 89 firstly developed as videogames in the early 1990s¹⁸. In 2007, they were adapted to real 90 physics classrooms in Japan, in a live-action team-based game where players cooperatively 91 discover clues, solve puzzles, and accomplish tasks in one or more rooms in order to 92 progress and accomplish a specific goal in a limited amount of time. This game has been 93 adapted for educational purposes since 2015¹⁸⁻²⁶. Several attempts have been made in 94 classrooms or rooms specific to computer science^{27,28}, physics ²⁹, chemistry ^{30,31} or 95 chemical engineering³². Some experiments have also been done in laboratories^{33,34}, using 96 simple chemical materials and reactions or even at a fake crime scene, with students 97 needing to use chemical techniques to solve the investigation^{35,36}.

98 The examples mentioned above have been very successful with students, both in terms of 99 increasing their motivation and attraction to scientific disciplines and allowing them to work

100 and develop their teamwork and communication skills. These pedagogical games are 101 therefore very interesting tools because adaptability, mutual aid and immersion are rarely 102 developed and practiced through a classical approach. However, implementation faces 103 logistical problems: the immobilization of one or more rooms, the significant cost of the 104 equipment (locks, secret mechanisms, chests, boxes), and the time problems faced by 105 teachers for design, test, preparation and reset operations. Moreover, the small number of 106 simultaneous participants, estimated to be between 3 and 5 for optimal activity, means 107 multiplying the sessions, and thus the presence of a teacher to guide/help students blocked 108 on certain puzzles.

109 Educators have tried ³⁷ to reduce the "physical" part of the escape game by offering a 110 mixture of real mechanisms/objects and online puzzles, taking advantage of students' 111 attraction to new technologies. It is in this continuity that we position our study, by 112 completely dematerializing the escape game mechanisms in order to integrate this pedagogy 113 into large audience even more easily. A new scenario, based on the Solvay Process (also 114 available as a paper version in the supplementary section) is first proposed for high 115 school/college audience, then adapted thanks to the Metaverse platform. Finally, a 116 discussion about benefits and limitations will be presented.

117 THE SCENARIOS

For this activity, two different scenarios were used. The first one is the physical and paper version of the Leblanc Process, published in 2018³². We present a new scenario here, which we propose first in a standard paper version. The Solvay process³⁸, named after its inventor, Ernest Solvay³⁹, is an industrial process for the production of soda ash⁴⁰ (sodium carbonate - Na₂CO₃) created in 1861. In the 20th century, it was the main industrial process used. The Solvay process makes sodium carbonate from brine (sodium chloride -NaCl) and from calcium carbonate (limestone - CaCO3)). The overall reaction is:

125

```
2 \operatorname{NaCl} + \operatorname{CaCO}_3 \to \operatorname{Na}_2\operatorname{CO}_3 + \operatorname{CaCl}_2 \quad (1)
```

126 This process is the result of careful observation of ancient practices by an expert 127 chemist and excellent practitioner of aqueous solutions. Helped by his brother, Ernest 128 Solvay founded his first factory at Couillet (Charleroi, Belgium) in 1863 and further perfected the process until 1872, when he patented it. Solvay process plants were established worldwide (70 Solvay process plants are still operational in 2020). The exploitation of his patents brought Solvay considerable wealth, which he used for philanthropic purposes, including the establishment of universities in Belgium and a series of important conferences in physics, known as the Solvay Conferences. Participants included luminaries such as Max Planck, Ernest Rutherford, Maria Skłodowska-Curie, Henri Poincaré, and Albert Einstein.

136 The class is divided into groups of 5-7 students. The game starts with an introduction to 137 the historical background by the teacher: "Walking in the streets of Brussels, the capital of 138 Belgium, you found a statue of Ernest Solvay, the great Belgium physicist. Observing the 139 letters of Solvay's first name (ERNEST), you push them to make the word ENTER in the 140 statue sign. You open a secret staircase leading you to a massive stone door". The timer for 141 solving the room's secret is set to 60 minutes and each group receives a first enigma sheet 142 (supplementary elements). The first enigma is an easy puzzle based on the Mendeleev 143 periodic table. The objective of this game is to make students use the table and imagine how 144 it could help them to open the first lock. The objective is to find the element composing the 145 name Solvay: S, O, Lv and Y. A hint is given to avoid confusing with the element Argon, the 146 symbol for which was A and not Ar before 1957. By summing the element numbers, the 147 student obtains a code, opening the second enigma. The second enigma, depicted in Figure 148 1, consists of finding a molecule for which the CPK color representation is very close to the 149 flag of Belgium, the country where Ernest Solvay was born.

150

Figure 1. Second enigma sheet of the Solvay process scenario.

152 The CPK color code is a convention for distinguishing atoms of different chemical 153 elements in molecular models (from Robert Corey, Linus Pauling and Walter Koltun⁴¹). With 154 the color code⁴², the students can easily find the molecule OCS, and then the combination 155 of the second lock, which is the element number of each element: 8, 6, 16. The third puzzle 156 is related to the chemical discovery of Solvay. Thanks to the text "In 1855, Ernest Solvay 157 discovered that limestone (calcium carbonate) and brine (sodium chloride) could create soda 158 ash (sodium carbonate)", the students have, first, to identify the compound and then write 159 the chemical equation of the overall process (Equation 1). Once the equation is written, a 160 hint suggests organizing the compound, from the smallest molar weight to the largest. With 161 this indication, a four-digit number is formed: 1861, which corresponds to the year the first 162 Solvay process was set up in Belgium. Finally, the students have access to the last enigma 163 sheet, available in the supplementary section. In this puzzle, the global equation of the 164 process is given, as is its cyclic aspect, and a calculation of the daily atmospheric release 165 capacity of carbon dioxide is requested. This step represents the application area of the 166 process and its impact on the environment. As the process is intricate, all the carbon 167 dioxide produced is, in fact, consumed in the process, and there is no carbon by-product. 168 The answer to this enigma is then 0000. This important element of the Solvay Process has 169 to be underlined and confronted with the HCl waste product from the Leblanc Process that 170 caused the first environmental law³² to be drawn up. After the student solves this enigma, a 171 message of congratulations is given to him, with a photograph of one of the Solvay 172 conferences showing some of the great scientists that Solvay brought together.

173

174 MATERIAL & METHOD

Metaverse is a free platform that permits unlimited Augmented Reality experiences to be created without the need for coding. Experiences are created online in the Metaverse Studio and viewed on the Metaverse smartphone application (iOS and Android). It is possible to create augmented reality scavenger hunts, games, stories, quizzes, tours, geocaches and virtual escape rooms. The experiences can be placed at specific locations with GPS and can feature polls, videos, timed challenges, google drive documents, links to a webpage, audio narration, and a leaderboard that tracks scores of points awarded

182 to users. Simple objects can be detected, digital items given and requested, and more. 183 The platform has several resources to help the user, including a comprehensive Manual 184 under the "Learn" button, a YouTube channel with very detailed instructional videos 185 ("Tutorials"), a Blog and a Forum. There is also a spreadsheet available, with a list of 186 Metaverse educational experiences (Breakouts) by topic⁴³. Metaverse was launched in 187 2017 and the company describes it as a "democratized platform that lets anyone create 188 interactive content in augmented reality". The website presents several testimonials 189 from teachers and students using this platform in the classroom to create AR 190 experiences⁴⁴. To manage Experiences from multiple creators, the option "Collections" is 191 available, for a monthly fee. This feature is mainly useful for teachers. It is only 192 possible, at this time, to copy (clone) entire experiences. Remixing experiences, 193 copy/paste for individual Scenes and Blocks are features that are not available at the 194 moment but could greatly enhance the potential use of this platform. Each project is 195 created in an "Experience Storyboard" which is an object-oriented drag-and-drop 196 workspace. The user can create a simple experience in a few minutes by using scenes 197 and blocks, and get instant feedback by using the OR code produced to test it. It is 198 necessary to open the Metaverse app and scan the QR code to start the experience on a 199 mobile device. The Leblanc process paper-based escape room³² was adapted in 200 Metaverse . For this implementation, although the authors had no previous knowledge 201 of the Metaverse platform, more time was spent figuring out how to adapt the storyline, 202 puzzles and find appealing images than on the actual Experience Storyboard layout of 203 scenes and blocks. This is a rather complex experience and was built with 51 scenes 204 and 12 blocks (the blue squares in Figure 2.a) linked together using transitions (more 205 details on their implementation can be found in the Supporting Information).

206

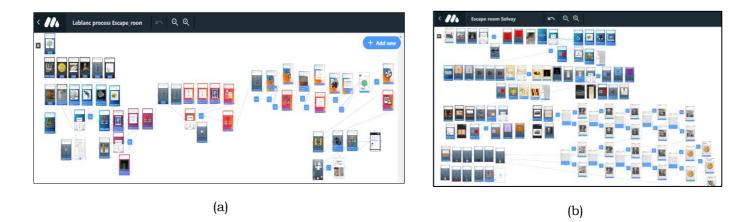



Figure 2. Experience Storyboard for (a) the Leblanc escape game (b) the Solvay escape
game.

209 The new escape room scenario focusing on the Solvay process was built in the 210 Metaverse Studio (Figure 2.b). Some features not previously employed were engaged in 211 order to create a meaningful experience, namely giving digital items to the player and 212 requesting such items from him (Figure 4d), adding sound or a timer to a scene, 213 providing various comments and the number of correct questions in a trivia game. The 214 scenario presented in this paper required 106 scenes and 27 blocks in Metaverse 215 Studio. As with the Leblanc escape room adaptation to Metaverse, in this Solvay 216 experience more clues are given than in the paper version and some are modified. The 217 hint relating to Argon is an example of such a modification since it was replaced with a 218 clue using the fictional element Adamantium (Figure 4c).

219 THE AUGMENTED REALITY ACTIVITY

To play these escape rooms, a smartphone/tablet per team is required with internet connection and the free Metaverse app downloaded from an application distribution platform (the links to download the application are given in the supplementary information section). To view the scenario, students only need to open the app and, in the home screen menu, scan a Metaverse QR code by tapping "Scan code" at the top of the screen. The QR codes for both scenarios are available in Figure 3.

226

227

Figure 3. Metaverse QR codes for Leblanc and Solvay escape rooms

The experiences have several scenes in AR mode, in which the students view a character in Augmented Reality in their room since the app enables the camera on a mobile device to underlay the surrounding environment (Figure 4).

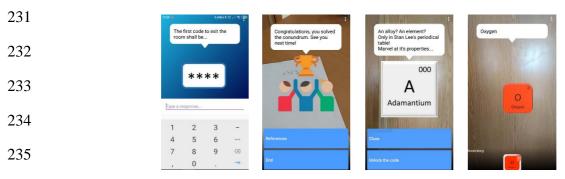


Figure 4. Illustration of the AR escape games (a) and (b) from the Leblanc scenario and (c) and (d) from the Solvay scenario.

The duration for each scenario is around 20-25 minutes depending on the number of players and the level of each participant. A video of each scenario is given in the supplementary information section.

241 **DISCUSSION**

242 A lesson using augmented reality is always welcomed by a class⁴⁵. Novelty and 243 originality can arouse interest and curiosity. Augmented Reality in the classroom makes 244 the student active, and it offers a particularly interesting playful aspect that increases 245 students' attention and motivation. It also captivates teachers who find a huge potential 246 to boost their courses as it provides them with new opportunities to enrich their 247 educational activities. The interaction is much stronger than with a simple book or 248 handout because the student can freely manipulate the objects or scenes presented and scroll them at his own pace46. Like conventional escape classroom activities, an AR 249

250 escape game strongly stimulates students to discover scientific concepts in a team in a 251 playful way and gives them the opportunity to develop their adaptive and responsive 252 skills. These games have been tested on 50 students and volunteers, including more 253 than five teachers from university and high-school in France and Portugal. The activity 254 has been tested by more than 70 volunteers (paper or mobile version). 95% of the 255 participants succeeded at the games within 30 minutes for the paper version and 15 256 minutes for the mobile version. This difference is mainly due to the automatic presence 257 of hints in the mobile version that can be accessed directly. Concerning the 5% of non-258 success, it was mainly due to a smartphone interface problem (technical problem 259 independent to the Metaverse application). A survey form was completed by students 260 (N=57) and teachers (N=13) and showed that 96% of the survey panel thought the game 261 was suitable to develop teambuilding and was a good tool for increasing motivation 262 (96%) and students' communication (95%). 80% of the panel did not recommend this 263 activity for groups bigger than 3-4 participants. The central role of the smartphone and 264 its small screen could place a severe limit on the number of students using it together 265 (1, 2 or 3 maximum). This can reduce the team skill benefits but the activity remains 266 interesting. Students are immersed in a story and given an opportunity to accomplish a 267 fictional objective within a given time limit. It is also a chance for them to compete with, 268 and against, their classmates, show off their individual skills, interact with each other, 269 and experience moments of discovery and wins. 75% of the panel who had already 270 tested a classical escape game felt a similar sensation in the game presented here. This 271 number is bigger than for a paper-based escape classroom activity. The numeric 272 support is thus a benefit in the "escape game" mood, thanks to the increase of 273 intensity/action during the game. 72% of the panel thought the game helped the 274 students to be more active than in a traditional classroom. 60% of the panel did not 275 recommend this activity to replace a traditional class, so we propose to use it as a 276 project, or personal work before or after the corresponding classes. This game does not 277 replace classical lectures but it is a complementary tool that can be used punctually

278 and following the specific classes to take a break and to escape monotony in the 279 classroom. Finally, 90% of the panel enjoyed the experience and recommended this 280 activity for use in the classroom (more than in previous experimentation³²). It is 281 important to note that the post-activity debriefing³² is really important to underline the 282 main scientific concept of the activity. The AR part of this activity is not as developed, or 283 original, as previous works of ¹⁶ or , but it is accessible for educators that do not have 284 the coding skills, the required software or the money to buy full adapted AR 285 experiences.

286 One of the strong points of this activity is its great adaptability, both in its theme and in 287 the level of students. The level of puzzles can be adjusted, so it is easy to adapt the level 288 from a discovery activity to specialized master level. The activity can be applied in all 289 areas of teaching, and the flexibility of digital transposition of the escape game allows 290 ongoing use with a teacher present, at home as a support to help motivation or to 291 provide the subject of a project for students in order to feed the activity catalogue. In 292 case these apps are used in a classroom with the presence of an educator, some QR 293 code could be put at different locations around the classroom to add more physical into 294 the escape game. In this case, the activity could be split in several smaller Metaverse 295 activities at each location. The use of digital media makes it possible to apply and 296 integrate educational escape games on a larger scale while retaining these advantages, 297 namely the increase in motivation and the development of adaptability and mutual aid.

298 CONCLUSION

A mobile learning practice activity, based on the use of Augmented Reality for original escape games, is proposed in this paper. Firstly, a new, printable, paper-based scenario is detailed in order to apply the escape room activity to the discoveries of Ernest Solvay. This scenario is composed of a series of enigmas unraveling the different steps of the chemistry behind the Solvay process and the life of its inventor. Then this scenario, and that of the Leblanc Process, has been adapted, thanks to the Metaverse open platform, to an application with Augmented Reality experience. These two scenarios can be 306 played with a smartphone or tablet, with or without the presence of educators. The 307 main advantage of this approach is that escape games are then not limited in space or 308 by number of participants, so the activity could be diffused to a larger audience and 309 could be used as personal work or a project for the student. The game provides a 310 teaching method that is complementary to existing ones and helps the students to 311 associate the basic concepts of chemistry (periodic table, balancing equations, and mole 312 calculations) with simple enigmas in an immersive and stimulating environment on 313 their smartphones. Students are more active than in a traditional classroom and are 314 strongly motivated to use a smart device to practice science.

315 The game can be used as a way of discovering a specific chemist (Nicolas Leblanc or 316 Ernest Solvay), the basics of chemical engineering, and some famous scientists. The 317 limitation imposed by the use of a smartphone is the number of students who can work 318 together simultaneously (maximum 3). This approach solves some of the material 319 limitations of educational escape games (room, material, locks), the cost is very small 320 and also the activity does not require the presence of the educators in the room. Time is 321 still required to create the scenario but, in the future, it could be interesting to 322 encourage students to create enigmas during a semester project. Organizing this escape 323 classroom takes a certain time (material and scenarios) but the benefits of this 324 technique are really stimulating.

325 ACKNOWLEDGEMENTS

326 The authors thank the C₂IP (Centre d'Innovation et d'Ingénierie Pédagogique) of INSA
327 Toulouse for its support in pedagogy.

328 AUTHOR INFORMATION

329 Nicolas DIETRICH

- 330 *E-mail: <u>nicolas.dietrich@insa-toulouse.fr</u>
- 331 Personal website: ndietrich.com
- 332 ORCID: orcid.org/0000-0001-6169-3101
- 333
- Note: The author declares no competing financial interest.
- 335

336 ASSOCIATED CONTENT

- 337 Supporting Information
- 338 Paper version of the Solvay scenario and METAVERSE tutorials (PDF, DOCX).
- 339 Example videos of both AR escape games walkthrough (link).
- 340 Video with the Leblanc Escape room (link http://www.ndietrich.com/wp-
- 341 content/uploads/2019/10/Metaverse_leblanc_petit.mp4)
- 342 Video with the Solvay Escape room (link http://www.ndietrich.com/wp-
- 343 content/uploads/2019/10/Metaverse_Solvay_petit.mp4)
- 344 A list of Metaverse Breakouts activities available (XLSX)

REFERENCES

- 345 Rosenberg, L. B. The Use of Virtual Fixtures as Perceptual Overlays to Enhance Operator Performance in Remote (1)Environments.; STANFORD UNIV CA CENTER FOR DESIGN RESEARCH, 1992. Williams, A. J.; Pence, H. E. Smart Phones, a Powerful Tool in the Chemistry Classroom. J. Chem. Educ. 2011, 88 (6), 683-686. (2)https://doi.org/10.1021/ed200029p. How to Transform Your Classroom With Augmented Reality - EdSurge News https://www.edsurge.com/news/2015-11-02-how-(3)to-transform-your-classroom-with-augmented-reality (accessed Aug 3, 2019). Crabben, J. van der. Why We Need More Tech in History Education https://medium.com/@janvdcrabben/why-we-need-more-(4)tech-in-history-education-805fa10a7251 (accessed Aug 3, 2019). Bonifácio, V. D. B. Offering QR-Code Access to Information on Nobel Prizes in Chemistry, 1901-2011. J. Chem. Educ. 2013, 90 (5)(10), 1401-1402. https://doi.org/10.1021/ed300812y. (6) Bonifácio, V. D. B. QR-Coded Audio Periodic Table of the Elements: A Mobile-Learning Tool. J. Chem. Educ. 2012, 89 (4), 552-554. https://doi.org/10.1021/ed200541e. Mirage - réalité augmentée et virtuelle pour l'enseignement http://mirage.ticedu.fr/ (accessed Aug 17, 2019). (7)(8) Wu, H.-K.; Lee, S. W.-Y.; Chang, H.-Y.; Liang, J.-C. Current Status, Opportunities and Challenges of Augmented Reality in Education. Computers & Education 2013, 62, 41-49. https://doi.org/10.1016/j.compedu.2012.10.024. Pence, H. E.; Williams, A. J.; Belford, R. E. New Tools and Challenges for Chemical Education: Mobile Learning, Augmented (9)Reality, and Distributed Cognition in the Dawn of the Social and Semantic Web. In Chemistry Education; John Wiley & Sons, Ltd, 2015; pp 693-734. https://doi.org/10.1002/9783527679300.ch28. Montola, M. A Ludological View on the Pervasive Mixed-Reality Game Research Paradigm. Personal Ubiquitous Comput. 2011, (10)15 (1), 3-12. https://doi.org/10.1007/s00779-010-0307-7. Al-Azawi, R.; Albadi, A.; Moghaddas, R.; Westlake, J. Exploring the Potential of Using Augmented Reality and Virtual Reality (11)for STEM Education. In Learning Technology for Education Challenges; Uden, L., Liberona, D., Sanchez, G., Rodríguez-González, S., Eds.; Communications in Computer and Information Science; Springer International Publishing, 2019; pp 36-44. (12)Yang, S.; Mei, B.; Yue, X. Mobile Augmented Reality Assisted Chemical Education: Insights from Elements 4D. J. Chem. Educ. 2018, 95 (6), 1060-1062. https://doi.org/10.1021/acs.jchemed.8b00017. (13)Naese, J. A.; McAteer, D.; Hughes, K. D.; Kelbon, C.; Mugweru, A.; Grinias, J. P. Use of Augmented Reality in the Instruction of Analytical Instrumentation Design. J. Chem. Educ. 2019, 96 (3), 593-596. https://doi.org/10.1021/acs.jchemed.8b00794. Barrett, R.; Gandhi, H. A.; Naganathan, A.; Daniels, D.; Zhang, Y.; Onwunaka, C.; Luehmann, A.; White, A. D. Social and (14)Tactile Mixed Reality Increases Student Engagement in Undergraduate Lab Activities. J. Chem. Educ. 2018, 95 (10), 1755–1762. https://doi.org/10.1021/acs.jchemed.8b00212. Plunkett, K. N. A Simple and Practical Method for Incorporating Augmented Reality into the Classroom and Laboratory. J. (15)Chem. Educ. 2019. https://doi.org/10.1021/acs.jchemed.9b00607. (16)Tee, N. Y. K.; Gan, H. S.; Li, J.; Cheong, B. H.-P.; Tan, H. Y.; Liew, O. W.; Ng, T. W. Developing and Demonstrating an Augmented Reality Colorimetric Titration Tool. J. Chem. Educ. 2018, 95 (3), 393-399. https://doi.org/10.1021/acs.jchemed.7b00618. (17)Zhu, B.; Feng, M.; Lowe, H.; Kesselman, J.; Harrison, L.; Dempski, R. E. Increasing Enthusiasm and Enhancing Learning for Biochemistry-Laboratory Safety with an Augmented-Reality Program. J. Chem. Educ. 2018, 95 (10), 1747-1754. https://doi.org/10.1021/acs.jchemed.8b00116. Nicholson, S. Peeking behind the Locked Door: A Survey of Escape Room Facilities. hite Paper available at (18)http://scottnicholson.com/pubs/erfacwhite.pdf 2015. Mahaffey, A. L. Interfacing virtual and face-to-face teaching methods in an undergraduate human physiology course for health (19)professions students | Advances in Physiology Education https://www.physiology.org/doi/abs/10.1152/advan.00097.2018 (accessed Aug 9, 2018). (20)Parker, K. B.; Hessling, P. A. Breakout of a Traditional Classroom Reality With Game-Based Learning Pedagogy. Handbook of Research on Innovative Digital Practices to Engage Learners 2019, 52-67. https://doi.org/10.4018/978-1-5225-9438-3.ch003. Dumnoenchanvanit, C. Escape Room Hengelo : Balancing Educational Content and Partipant Enjoyment Within Escape Rooms (21)https: ay.utwente.nl/79190/ (accessed Aug 19, 2019). Elzen, L. C. van den. Improving the motivation of students using an educational escaperoom https://essay.utwente.nl/79051/ (22)(accessed Aug 19, 2019). Duncan, D.; Lee. Building Escape Rooms to Increase Student Engagement in First-Year Engineering Classes : American Society (23)for Engineering Education https://www.asee.org/public/conferences/140/papers/26516/view (accessed Aug 19, 2019). Guigon, G.; Vermeulen, M.; Humeau, J. A Creation Tool for Serious Puzzle Games. In CSEDU 2019; CSEDU 2019 - 11th (24)International Conference on Computer Supported Education: Heraklion, Greece, 2019. Bartlett, K. A.; Anderson, J. L. Gaming to Learn: Bringing Escape Rooms to the Classroom. Handbook of Research on Innovative (25)Digital Practices to Engage Learners 2019, 1–27. https://doi.org/10.4018/978-1-5225-9438-3.ch001. (26)Bartlett, K.; Anderson, J. Using an Escape Room to Support the Learning of Science Content; Association for the Advancement of Computing in Education (AACE), 2019; pp 710-715. (27)Borrego, C.; Fernández, C.; Blanes, I.; Robles, S. Room Escape at Class: Escape Games Activities to Facilitate the Motivation and Learning in Computer Science. Journal of Technology and Science Education 2017, 7 (2), 162–171. https://doi.org/10.3926/jotse.247. $\begin{array}{r} 404\\ 405\\ 405\\ 406\\ 407\\ 408\\ 409\\ 410\\ 412\\ 413\\ 412\\ 413\\ 414\\ 415\\ 416\\ 417\end{array}$ López-Pernas, S.; Gordillo, A.; Barra, E.; Quemada, J. Examining the Use of an Educational Escape Room for Teaching (2.8)Programming in a Higher Education Setting. IEEE Access 2019, 7, 31723–31737. https://doi.org/10.1109/ACCESS.2019.2902976. Vörös, A. I. V.; Sárközi, Z. Physics Escape Room as an Educational Tool. AIP Conference Proceedings 2017, 1916 (1), 050002. (29)https://doi.org/10.1063/1.5017455. Eukel, H. N.; Frenzel, J. E.; Cernusca, D. Educational Gaming for Pharmacy Students - Design and Evaluation of a Diabetes-(30)Themed Escape Room. Am J Pharm Educ 2017, 81 (7). https://doi.org/10.5688/ajpe8176265. Watermeier, D.; Salzameda, B. Escaping Boredom in First Semester General Chemistry. J. Chem. Educ. 2019. (31)https://doi.org/10.1021/acs.jchemed.8b00831. Dietrich, N. Escape Classroom: The Leblanc Process—An Educational "Escape Game." J. Chem. Educ. 2018, 95 (6), 996–999. (32)https://doi.org/10.1021/acs.jchemed.7b00690. Vergne, M. J.; Simmons, J. D.; Bowen, R. S. Escape the Lab: An Interactive Escape-Room Game as a Laboratory Experiment. J. (33)Chem. Educ. 2019. https://doi.org/10.1021/acs.jchemed.8b01023. Peleg, R.; Yayon, M.; Katchevich, D.; Moria-Shipony, M.; Blonder, R. A Lab-Based Chemical Escape Room: Educational, (34) Mobile, and Fun! J. Chem. Educ. 2019. https://doi.org/10.1021/acs.jchemed.8b00406. 418 Ferreiro-González, M.; Amores-Arrocha, A.; Espada-Bellido, E.; Aliaño-Gonzalez, M. J.; Vázquez-Espinosa, M.; González-de-(35)
- 419 Peredo, A. V.; Sancho-Galán, P.; Álvarez-Saura, J. Á.; Barbero, G. F.; Cejudo-Bastante, C. Escape ClassRoom: Can You Solve a Crime

- Using the Analytical Process? J. Chem. Educ. 2019, 96 (2), 267–273. https://doi.org/10.1021/acs.jchemed.8b00601.
- (36) Yayon, M.; Rap, S.; Adler, V.; Haimovich, I.; Levy, H.; Blonder, R. Do-It-Yourself: Creating and Implementing a Periodic Table of the Elements Chemical Escape Room. *J. Chem. Educ.* 2019. https://doi.org/10.1021/acs.jchemed.9b00660.
- (37) Cain, J. Exploratory Implementation of a Blended Format Escape Room in a Large Enrollment Pharmacy Management Class.
- Currents in Pharmacy Teaching and Learning 2019, 11 (1), 44-50. https://doi.org/10.1016/j.cptl.2018.09.010.
 - Johns, R. J. Solvay Processes. Journal of Chemical Education 1963, 40 (7), A535. https://doi.org/10.1021/ed040pA535.2. (38)
 - (39) Ernest Solvay (1838-1922). J. Chem. Educ. 1938, 15 (9), 401. https://doi.org/10.1021/ed015p401.
- (40)Glanville, J.; Rau, E. Soda Ash-Manufacture - An Example of What? J. Chem. Educ. 1973, 50 (1), 64.
- https://doi.org/10.1021/ed050p64.
- Eld, C. N.; Cram, D. J. Views of Space: Analysis of Molecular Shapes and Volumes by Casting the Unoccupied Space within (41)Carcerand CPK Molecular Models. J. Chem. Educ. 1993, 70 (5), 349. https://doi.org/10.1021/ed070p349.
- CPK Coloring. Wikipedia; 2019. (42)
- Metaverse Educational Experiences Https://Docs.Google.Com/Spreadsheets/d/1s3aw1-(43)
- _p5ofg5zLjvm4nyumox9TUnDx160GVLPiBvss/Edit#gid=519616070.
- (44)Metaverse Testimonies - Https://Medium.Com/Metaverseapp/You-Can-Create-Magic-in-the-Classroom-951d068f365c.
- (45) Sanii, B. Creating Augmented Reality USDZ Files to Visualize 3D Objects on Student Phones in the Classroom. J. Chem. Educ. 2019. https://doi.org/10.1021/acs.jchemed.9b00577.
- Sung, R.-J.; Wilson, A. T.; Lo, S. M.; Crowl, L. M.; Nardi, J.; St. Clair, K.; Liu, J. M. BiochemAR: An Augmented Reality (46)
- Educational Tool for Teaching Macromolecular Structure and Function. J. Chem. Educ. 2019. https://doi.org/10.1021/acs.jchemed.8b00691. 439