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Abstract In eukaryotic cells, glycogenin is a self-glucosylating
protein that primes glycogen synthesis. In yeast, the loss of func-
tion of GLG1 and GLG2, which encode glycogenin, normally
leads to the inability of cells to synthesize glycogen. In this re-
port, we show that a small fraction of colonies from glg1glg2 mu-
tants can switch on glycogen synthesis to levels comparable to
wild-type strain. The occurrence of glycogen positive glg1glg2
colonies is strongly enhanced by the presence of a hyperactive
glycogen synthase and increased even more upon deletion of
TPS1. In all cases, this phenotype is reversible, indicating the
stochastic nature of this synthesis, which is furthermore illus-
trated by colour-sectoring of colonies upon iodine-staining. Alto-
gether, these data suggest that glycogen synthesis in the absence
of glycogenin relies on a combination of several factors, includ-
ing an activated glycogen synthase and as yet unknown alterna-
tive primers whose synthesis and/or distribution may be
controlled by TPS1 or under epigenetic silencing.

Keywords: Glycogenin; Glycogen; Trehalose; Glycogen
synthase; GSY2; TPS1

1. Introduction

Glycogen is a polymer of glucosyl units linked by a-1,4-

bonds with a-1,6-branches. It can accumulate to account for

up to 10–15% of the cell dry mass in yeast under conditions

of growth restriction, upon specific physicochemical stresses

and at the end of growth on a glucose-limited medium [1]. In

eucaryotic cells, the biogenesis of glycogen is initiated by glyc-

ogenin, a self-autoglucosylating protein that produces, from

UDP-glucose, a short oligosaccharide covalently linked to a

tyrosine residue of this initiator protein. Once the oligosaccha-

ride chain has been extended sufficiently (6–10 glucose resi-

dues), glycogen synthase catalyzes the elongation and,

together with the action of a branching enzyme, generates a

mature glycogen molecule of very high molecular mass [2,3].

In the yeast Saccharomyces cerevisiae, GLG1 and GLG2 en-

code glycogenin-like proteins that are 55% identical to each

other and 33% identical to the rabbit muscle glycogenin [4].

Disruption of either gene causes no defect in glycogen accumu-

lation, but deletion of both genes was shown to abolish glyco-

gen synthesis. The same result was recently obtained by

disrupting the gnn gene that encodes the Neurospora crassa

glycogenin [5]. Taken together, these genetic data are the

strongest proof to date that a protein primer is necessary for

glycogen biogenesis in eucaryotic cells.

Until now, no glycogenin-like protein has been found in bac-

teria [6], which suggests that the initiation of this polymer must

occur in a different way. Ugalde et al. [7] recently showed that

the de novo synthesis of glycogen in Agrobacterium tumefac-

iens is initiated directly on glycogen synthase, which catalyzes

both the autoglucosylation and the elongation process. Also,

in mammalian tissues, it was shown that alkylglucosides and

aromatic glucosides can serve as artificial acceptors for the

transfer of glucosyl unit from UDP-glucose by glycogen syn-

thase yielding alkylmaltooligosaccharide products, which can

be further elongated into a-(1,4) glucosyl chains by the same

enzyme [8]. Whether such oligosaccharide acceptors exist in

vivo is still an open question. There was also a report of the

existence of a manganese sulfate-dependent glucose trans-

fer to glycoproteins that is catalyzed by a non-glucose

6-phosphate-activated glycogen synthase [9], but the role of

this process in the early stage of glycogen biogenesis is still ob-

scure. Together, these data raise the question of whether glyco-

gen biogenesis in eukaryotic cells could still occur in the

absence of glycogenin. In this report, we show that glycogen syn-

thesis can take place in glycogenin-defective strains of S. cerevi-

siae, and discuss possible mechanisms underlying this process.

2. Materials and methods

2.1. Yeast strains, plasmids and growth conditions
Construction of strains from EG3218-1A and CEN.PK113-1A

background was described previously [10,11]. Unless otherwise stated,
yeast strains were grown at 30 �C in a synthetic minimal medium con-
taining 2% (w/v) galactose (YNGal) or glucose (YNGlu), 0.17% (w/v)
yeast nitrogen base without amino acids and ammonium, 0.5% (w/v)
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ammonium sulfate, supplemented with the appropriate auxotrophic
requirements. The same medium with only 0.02% (w/v) ammonium
sulfate was prepared for nitrogen limitation experiments. Agar was
added at 2% (w/v) for solid media. The tps1 strains cannot grow on
glucose. Therefore, for rigorous comparisons, galactose was routinely
used. This carbon source further leads to enhanced glycogen deposi-
tion in yeast cells as compared to glucose, and makes easier identifica-
tion and counting with better contrast between strains that do and do
not accumulate glycogen.
Plasmids YEp356 and pYADE4 were used as 2l control vectors car-

rying URA3 and TRP1 markers, respectively. Plasmids carrying full
length GSY2 and mutated variants in the COOH-terminal have been
described previously [12,13]. These constructs will be referred in this
study to as pGSY2 (pYcDE2-GSY2; 2l, TRP1, GSY2 CDS under
the ADH1 promoter), pGSY2*-CEN (pRS314-GSY2 S650A/S654A;
CEN/ARS, TRP1, own promoter), pGSY2D643-2l (pYcDE2-
GSY2D643; 2l, TRP1, GSY2 CDS under ADH1 promoter). The mul-
ticopy vector carrying the full length GAC1 gene is referred to as
pGAC1-1 (pST93; 2l, URA3 [14]) or pGAC1-2 (same as pGAC1-1
with TRP1 as marker; unpublished).

2.2. Biochemical and analytical procedures
Yeast samples (50 OD600 units) were filtered through nitrocellulose

membranes. The cells were rapidly scraped, frozen in liquid nitrogen
and stored at �80 �C until use. Preparation of extracts and assay of
glycogen synthase were carried out as described by François et al.
[15] in the presence of 0.25 mM UDP [U–14C] glucose. To estimate
the active and total form, the assay was done in the absence and in
the presence of 5 mM galactose-6-P instead of glucose-6-P because
galactose-6-P can act as a glycogen synthase activator with a
Ka @ 0.5 mM (François, unpublished), and this avoided isotopic dilu-
tion of UDP [U–14C] glucose due to the presence of active galactose-
1-phosphate uridyl transferase and UDP-galactose epimerase in crude
extract of galactose-grown cells.

2.3. Determination of glycogen and metabolites
Qualitative assessment of glycogen content was carried out by the io-

dine-staining method of Chester [16] following the modification of
Enjalbert et al. [17]. Quantitative assays of glycogen and trehalose lev-
els were performed according to Parrou and François [18]. Collection
of yeast cells for extraction of intracellular metabolites and their mea-
surement were carried out as in [19,20].

2.4. Isolation of glycogen and determination of its structure by proton

nuclear magnetic resonance spectrometry (1H NMR)
Glycogen was purified from wild-type and mutant strains grown on

YNGal (i.e., at OD600 � 15). Briefly, about 0.5–1 g cells (dry mass)
were disrupted in 20 ml of 50 mM sodium b-glycerophosphate buffer,
pH 7.6, containing 2 mM EDTA, 2 mM EGTA and a protease inhib-
itor cocktail (Roche, 1836170; 1 capsule for 10 ml of buffer) with 0.5 g
glass beads (0.5 mm diameter) by vigorous vortex mixing, 6 times for
15 s, with 15 s intervals on ice. The supernatant was collected by a
10 min centrifugation at 3000 · g, 4 �C. A second centrifugation at
15000 · g, 4 �C for 45 min was followed by a third ultracentrifugation
of the latter supernatant at 100000 · g, 4 �C for 1 h 20 min. The pellet,
which contained glycogen, was washed with 10 ml of extraction buffer,
resuspended in 1 ml of the same buffer, and ethanol (to a final 66% v/v)
was added. The glycogen pellet was collected by centrifugation (5 min
at 10000 · g in a microfuge), rinsed with 66% cold ethanol. After re-
moval of excess of ethanol by incubation at room temperature, the
purified glycogen (about 20 mg) was resuspended in a minimal volume
of 50 mMammoniumbicarbonate, pH7.6, in the presence of 0.02 mg/ml
of trypsin. The suspension was incubated at 37 �C for 5 h, then the
same amount of trypsin was added and the solution was incubated
for another 5 h. After digestion, samples were dialyzed overnight at
4 �C against MilliQ water (SpectraPor Membrane MWCO: 6-8000
Spectrum) and lyophilized. The samples were then analysed by Nuclear
Magnetic Resonance. 1H NMR analyses were performed on a Bruker
AMX-500 spectrometer at 500.13 MHz using a 5 mm BBI probe at
343 �C in D2O. COSY experiments were performed using the Bruker
pulse field gradient program cosygpmf, with 1.5 s recycle delay and
0.52 s acquisition time. A sine-bell apodization function was applied
before Fourier transformation.

3. Results

3.1. Yeast can synthesize glycogen in the absence of glycogenin

A very simple method to evaluate glycogen accumulation in

yeast is to spot yeast cultures on agar plates and then to check

whether these patches stain brown upon exposure to iodine va-

pour [16,17]. As indicated in Fig. 1A, the patch of the glg1glg2

mutant remained yellow whereas the wild-type strain was

brown. However, when a culture of glg1glg2 cells was spread

on YNgal agar plates to generate isolated colonies, we surpris-

ingly found that 2–3% of these colonies were brown after io-

dine staining (Fig. 1B, left panel). The colour of the colonies,

but not the frequency of their apparition, was considerably en-

hanced when the medium was nitrogen-limited (0.02% ammo-

nium sulfate instead of 0.5%; Fig. 1B, right panel), a condition

known to favour glycogen deposition [17,21]. Moreover, this

phenotypic trait was associated neither with nature of the car-

bon source (identical results with glucose, data not shown),

nor with the genetic background of the strain since similar re-

sults were obtained with the CC9 strain [4], a glg1glgl2 mutant

generated in a different genetic context (data not shown). Un-

der this condition, 100% of the isolated colonies from wild-

type strains turned brown when exposed to iodine vapour

(data not shown).

To verify that the brownish colouration of glg1glg2 mutant

colonies was due to glycogen, and not to other molecules such

as lipids that are known to interfere somehow with the iodine

staining [22], we performed two types of experiments. In the

first, brown colonies of glg1glg2 mutant were cultivated in

Fig. 1. (A, B) Iodine staining of a wild-type and glycogenin-defective
strains. The wild-type CENPK113-1A and corresponding glg1glg2
mutant were pre-cultured in liquid YNGal and 10 ll were spotted on a
YNgal plate (A) or spread to obtain isolated colonies on galactose
plates with high (left panel) or low ammonium sulfate (right panel).
(C) Enzymatic determination of glycogen during growth of �iodine-
positive� glycogenin-defective colonies. An overnight pre-culture of
iodine-positive colonies from a glg1glg2 mutant in YNGal medium
limited for ammonium sulfate was inoculated in 100 ml of the same
medium for glycogen determination. Symbols: (m) OD600, (e)
glycogen levels.
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nitrogen-limiting YNGal medium and samples from this cul-

ture were subjected to digestion by a-amylo-(1,4)–(1,6) gluco-

sidase from A. niger. As shown in Fig. 1C, this culture

accumulated glycogen up to 60 lg equivalent glucose per

OD600 unit, i.e., � 10% of dry mass, even though cell growth

was weak due to nitrogen limitation. Glycogen metabolism

in these glg1glg2 cells was similar to what occurs in wild-type

cells [21], as shown by a rapid degradation of the stored glyco-

gen after inoculation and synthesis that started as the growth

was restricted by the nitrogen limitation. In the second exper-

iment, we analyzed the structure of glycogen by Proton Nucle-

ar Magnetic Resonance Spectrometry (1H NMR). Both 1D

and 2D-COSY 1H NMR-spectra of purified polysaccharides

from wild-type and the glg1glg2 mutant were superimposable

on those of �normal� glycogen [23] (data not shown).

3.2. An activated form of glycogen synthase is required for the

glycogenin-independent accumulation of glycogen

Yeast cells deleted for the GSY1 and GSY2 genes, which en-

code glycogen synthase, are unable to accumulate glycogen

(Fig. 2A and [24]). However, in contrast to the glg1glg2 mu-

tant, no brown colonies were observed upon iodine staining

of either gsy1gsy2 or glg1glg2gsy1gsy2 mutants grown on

nitrogen-limiting agar plates (data not shown). This indicates

that the synthesis of glycogen in the absence of glycogenin still

proceeds through glycogen synthase. Moreover, we found that

a glg1glg2 mutant transformed with a high copy number plas-

mid bearing either GSY2D643, which encodes a hyperactive

form of glycogen synthase [12] or GAC1, which encodes the

targeting subunit of glycogen synthase phosphatase [14],

recovered the ability to accumulate glycogen (Fig. 2A). In con-

trast, a high copy number plasmid bearing a construct encod-

ing the wild-type form of Gsy2p, which enables a gsy1gsy2

mutant to re-establish glycogen synthesis, was unable to re-

store glycogen synthesis in the glg1glg2 strain (Fig. 2A). This

result is consistent with the fact that the activation of glycogen

synthase is severely impaired in a glg1glg2 mutant at the onset

of glycogen accumulation during growth [4]. Finally, and in

confirmation of previous work [11], glycogen synthesis in cells

lacking glycogenin, but not in those defective in glycogen syn-

thase, could also be restored upon deletion of TPS1, which en-

codes trehalose-6-phosphate synthase (Fig. 2A). As shown in

Fig. 2B, glycogen accumulation in glg1glg2tps1 as well as in

glg1glg2 cells bearing hyperactive glycogen synthase followed

a similar profile than in the wild-type until the entrance into

the stationary phase. This result prompted us to examine the

effect of TPS1 deletion on glycogen synthase. As shown in

Table 1, the activated form of the glycogen synthase was 2-fold

increased upon TPS1 disruption. The intracellular levels of

UDP-glucose, the substrate of glycogen synthase, and of glu-

cose-6-P, a potent activator of this enzyme [25], were also

1.3–2-fold higher in the glg1glg2tps1 mutant than in the

glg1glg2 strain. Thus, the combination of a partially activated

form of glycogen synthase and greater availability of UDP-

glucose and glucose-6-P may explain in part the strong potency

of a glg1glg2tps1 strain to accumulate glycogen.

3.3. Evidence for a stochastic ‘on–off ’ synthesis of glycogen in

the absence of glycogenin

As shown in Fig. 3, the percentage of colonies that stained

brown with iodine vapour increased from 3% in a glg1glg2mu-

tant to 99% upon deletion of TPS1 in this strain. These results

raised the question as to whether colonies from glg1glg2 mu-

tants that stained brown had definitively acquired this pheno-

type, which would be consistent with a genetic reversion of the

original phenotype. To verify this hypothesis, we examined the

stability of the iodine-staining phenotype following successive

spreading of colonies on nitrogen-limiting plates. The percent-

age of yellow and brown colonies from the glg1glg2 mutant

was then scored from a total of about 500 colonies after each

spreading (Fig. 3A). When a brown colony was spread again

on a new agar plate, about 25% of isolated cells yielded colo-

nies that did not stain upon iodine vapour. When one of these

yellow colonies was spread again on YNGal, less than 0.5% of

Fig. 2. (A) Iodine staining of cell patches. Strains from the CEN.PK
family grown on YNgal: wild-type (CENPK113-7D) and glg1glg2,
gsy1gsy2, tps1, glg1glg2tps1 and gsy1gsy2tps1 mutant strains. Strains
from the EG328 family grown YNglucose: wild-type (EG328-1A) and
glg1glg2 or gsy1gsy2 derivatives transformed with empty vector,
pGSY2, pGSY2D 643-2l or pGAC1-2. (B) Glycogen accumulation
during growth of CEN.PK strains in YNGal supplemented with
the appropriate auxotrophic requirements: wild-type (s), glg1glg2
(d), glg1glg2+pGAC1-1 (n), glg1glg2+pGSY2D643-2l (e) and
glg1glg2tps1 (h).
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cells from this colony were able to regain the capacity to syn-

thesize glycogen. This very low score contrasted with the 2–3%

of brown colonies that was obtained when directly spreading a

glg1glg2 culture on plates. When this experiment was repeated

with the glg1glg2tps1 mutant, which restored glycogen synthe-

sis to almost 99% of colonies, more than 90% of the cells that

originated from a iodine-positive colony yielded brown colo-

nies, and hence preserved their capacity to accumulate glyco-

gen on successive spreadings (Fig. 3B). Nevertheless, once

the glycogen synthesis was lost in a glg1glg2tps1 colony, the

percentage of cells that was able to recover glycogen synthesis

was very low (between 0% and 7%). Taken together, these re-

sults illustrate a reversible switch between glycogen-positive

and -negative phenotypes that does not support a genetic

reversion. The data suggest that glycogen synthesis in the ab-

sence of glycogenin is a stochastic event that requires a combi-

nation of different factors, but is promoted upon deletion of

TPS1.

This stochastic glycogen synthesis was even better illustrated

by the heterogeneity in iodine staining within individual colo-

nies of glg1glg2 cells transformed with pGSY2D643-2l (Fig.

4A). More precisely, these iodine-responsive colonies exhibited

yellow sectors, whereas small sectors of brown colour could be

seen in yellow colonies. This sectoring pattern is classically ob-

served with phenotypes that are controlled by genes subjected

to silencing, as for instance the red colour sectors of colonies

when ADE2 is located at the mating type locus [26]. Also, a

fragment of the endogenous 2l plasmid has been reported to

cause gene silencing on adjacent regions [27]. However, this

element, which is present in the pGSY2D643-2l construct does

not account for GSY2 silencing and for the switch between the

two phenotypes since colour sectors were also observed in col-

onies of a glg1glg2 strain expressing a hyperactive Gsy2p from

a CEN vector (Fig. 4B). The difference between the two trans-

formants was a higher fraction of brown colonies (16 vs. 26%)

that stained more intensely with iodine vapour in the glg1glg2

mutant transformed by pGSY2D643-2l. In addition, yellow

sectors were observed at the periphery of the few iodine-

positive glg1glg2 colonies (Fig. 4C), which support data from

Fig. 3A that glycogen synthesis was rapidly lost in this glycog-

enin defective strain.

4. Discussion

The synthesis of glycogen in yeast cells defective in glycoge-

nin is at first glance unpredictable, based on previous reports

showing that deletion of GLG1 and GLG2 encoding the two

glycogenin abolished this synthesis [4,10]. The ability of a glyc-

ogenin-defective strain to accumulate glycogen was neverthe-

less a rare event found in fewer than 3% of colonies present

on agar plates. This capacity was enhanced in the presence

of a hyperactive form of glycogen synthase or upon deletion

of TPS1, which furthermore caused an increase in UDP glu-

cose and glucose-6-P, the substrate and a positive effector of

glycogen synthase, respectively. However, it is unlikely that

this glycogen synthesis occurs through glycogen synthase

alone, since yeast glycogen synthase expressed in A. tumefac-

iens was unable to initiate glycogen synthesis, in contrast to

the native bacterial glycogen synthase [7]. Altogether, these re-

sults support the existence of an initiator molecule that serves

to prime glycogen synthesis. In a previous report, we already

speculated on the presence of alternative primers for glycogen

initiation, since we found that mutated glycogenin proteins

that do not have oligosaccharides attached to them, can still

Table 1
Metabolites levels in glg1glg2 and glg1glg2tps1 mutant cultivated on
YNGal medium

Glycogen synthase (nmol/min/mg protein)\

glg1glg2 mutant glg2glg2tps1 mutant

� Galactose-6-P 0.80 ± 0.08 1.59 ± 0.04
+ Galactose-6-P 5 mM 2.48 ± 0.12 2.50 ± 0.06
Ratio (�/+ galactose-6-P) 30 62

Metabolites Intracellular levels (lmol/g dry mass)\

Glucose-6-P 5.9 ± 0.50 12.5 ± 1.3
Glucose-1-P 5.7 ± 0.65 7.6 ± 1.2
Galactose-1-P 21.5 ± 1.5 41.9 ± 6.0
UDP-glucose 3.85 ± 0.12 4.84 ± 0.15
UDP-galactose 1.25 ± 0.05 1.5 ± 0.15

Enzyme activity and metabolites were measured in cells harvested at
the late exponential phase of growth on YNgal (OD600 � 3.5). The
values reported are the means ± S.D. of four independent experiments.

Fig. 3. Stability of the iodine-staining phenotype upon successive
passage of colonies from glg1glg2 (A) and glg1glg2tps1 (B) mutant
strains. The strains were grown on YNGal and spread on nitrogen-
limited agar plates to obtain isolated colonies. After two days of
growth, they were inverted over iodine vapour, and the percentage of
yellow and brown colonies was scored. Single yellow or brown colonies
were then independently resuspended in 1 ml sterile water, diluted, and
spread to give 100–200 colonies per plate (1 colony � 106 individual
cells). Again, the percentage of yellow (Y) or brown colonies (B) was
scored. This procedure was repeated two more times.
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synthesize �10% of the wild-type glycogen likely through

transglucosylation of alternative primers [10]. The lack of glyc-

ogenin in our glg1glg2 deletion mutant definitively excludes

any role for glycogenin in the initial primer glucosylation.

The idea that possible acceptor molecules could by-pass the

need for glycogenin to prime glycogen synthesis is not without

precedent since short oligosaccharides from maltose to malt-

opentose can be used as artificial acceptors for the transfer

of glucose from UDP-glucose by glycogen synthase [28]. How-

ever, as the Km for these acceptors is extremely high

(>100 mM), these data likely do not have any physiological

relevance. Similarly, alkylglycosides can act as artificial prim-

ers for glycogen biosynthesis with a high affinity for glycogen

synthase, but their existence in vivo is questionable [8]. Bio-

chemical attempts to identify this potential initiator in yeast

cells have so far failed, as glycogen produced from glycogenin

mutant could be totally degraded by a-(1,4),a-(1,6) amyloglu-

cosidase (unpublished). This could suggest that the initiator

molecule is either an oligosaccharide containing a-(1,4) or

a-(1,6) glucosyl linkages or a glucosylated protein that is present

at the initiation stage and eliminated later during elongation.

A relevant observation was that all the glycogenin-deficient

strains derivatives exhibited clear iodine-staining sectoringwith-

in individual colonies. This finding is consistent with this synthe-

sis of glycogen being stochastic in nature, depending on a

combination of different factors that are not distributed or trans-

mitted equally between mother and daughter cells. Thus, the

�on–off� glycogen accumulation in cells within a single colony

may be accounted for by the presence of a limited amount of

the initiator molecule together with a high activity of glycogen

synthase. The incidence of these two events would be extremely

low in a glg1glg2 mutant. Alternatively, a key gene involved in

the synthesis of this alternative molecule might undergo epige-

netic silencing if located near a telomere or in a region subjected

to silencing. The finding that the synthesis of glycogen in a

glg1glg2 mutant was enhanced upon deletion of TPS1 could

be consistent with previous data that alteration in trehalose syn-

thesis affects glycogen metabolism [11,29]. However, we could

also speculate that the loss of TPS1 function almost completely

releases the epigenetic silencing, if this latter is responsible for

the stochastic synthesis of glycogen in the absence of glycogenin.

Elucidation of this glycogenin-independent synthesis of glyco-

gen will be challenging due to its stochastic nature but work to-

wards this goal is ongoing.
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Fig. 4. Colony-sectoring phenotype upon iodine staining. (A) Colonies obtained from a culture of a glg1glg2 mutant transformed with pGSY2D643-
2l. Right panels: magnification of sectored brown colonies showing multiple yellow sectors. (B) glg1glg2 mutant transformed with pGSY2\-CEN.
(C) glg1glg2 mutant strain. The arrow (upper panel) points to a brown colony with sectoring phenotype (a magnification of one of these colonies is
shown in the lower panel).
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