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This work mainly concentrates on the optimization of
cubic and bistable NES to find the maximum efficiency point
under harmonic excitation. The conservative system is con-
sidered to reveal the inner property of the damping system.
With the application of the multiple scales method and the
complex variables method, the threshold of excitation and
different response regimes are distinguished under the as-
sumption of 1:1 resonance. The maximum efficiency point of
cubic and bistable NES occurs when SMR disappears. The
factors that affect the optimal efficiency limit are explored.
The result indicates that the maximum absorption efficiency
level is mainly determined by the damping parameters. Com-
pared with the cubic case, the bistable case involves more
complex regimes in terms of chaos oscillation. The influence
of damping parameters on the chaos threshold is discussed
to adopt different energy levels. With the help of analytical
predictions, the proper nonlinear stiffness is determined for
certain harmonic excitation. This work offers some funda-
mental insights into the optimal design of cubic and bistable
NES.

1 Introduction
The elimination of harmful vibrations is an inevitable is-

sue in the modern manufacturing industry and the civil engi-
neering domain. A classic vibration-absorbing device, called
the Tuned Mass Damper (TMD) is widely used [1]. It con-
sists of a mass that is connected, by a linear spring and a
damper, to a primary mass. If the linear stiffness is substi-

tuted by a nonlinear one, a novel type of vibration-absorbing
device, called a Nonlinear Energy Sink (NES), is obtained.
Compared to the TMD, the NES has some remarkable ad-
vantages: a lighter attached mass, a broader range of ab-
sorption frequencies and the capability to erase the resonance
peak [2].

Due to the existence of nonlinearity and damping, the
NES can produce a one-way, irreversible Target Energy
Transfer (TET) from the primary system to the NES mass,
where the energy is finally dissipated by damping [3]. The
TET phenomenon can be explained by studying the energy
of the system without considering the damping and exter-
nal force [4]. These special periodic solutions of the con-
servative system are referred to as Nonlinear Normal Modes
(NNM). These stable special orbits are responsible for TET
[5]. The efficiency of this mechanism in absorbing vibra-
tion has been explored both numerically [6, 7] and experi-
mentally [8–11]. Also, its potential applications in structural
seismic control [12] and in mitigating the hypersonic 3-D
wing flutter [13] have been studied.

The complex variables method and the multiple scales
method are widely used to separate the relaxation-oscillation
into fast and slow time scales during the TET [14]. The Slow
Invariant Manifold (SIM) structure with respect to the slow
time scales manifests the jumping phenomenon between the
stable branches and also provides the damping condition re-
quired to trigger the Strongly Modulated Response (SMR)
[15]. The final periodic response corresponds to the ordinary
fixed point of the averaged flow equation in the condition of
1:1 resonance. On the other hand, the appearance of folded
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singularities leads to the occurrence of SMR. The stability
of SMR is transferred into a 1-D mapping problem, where
the drop point after ’jumping’ is located in a certain interval
of phase portraits. The necessary condition of external har-
monic force is also investigated experimentally to trigger the
SMR mechanism [11].

If the negative stiffness is added between the primary
system and the attached NES mass, the NES mass can pos-
sess two stable equilibria and is called a bistable NES. This
addition essentially changes the dynamic regimes of the
bistable system. So it also requires a different analytical
treatment. According to the potential energy surface in the
Hamilton system [16], the double-wells distinguish the dif-
ferent energy levels as intra-well oscillation, at low energy
input, and inter-well oscillation. If the input energy is intense
enough, chaos regimes also occur. The Melnikov method is
employed to determine the boundary of the chaos response
for the homoclinic bifurcation [17, 18]. Based on the dif-
ferent response regimes, Qiu et al. [19] have developed an
optimization process to locate an optimal point in the tran-
sition between the SMR and stable periodic response, where
the efficiency has achieved the maximum value.

From the perspective of absorbing efficiency, it is nec-
essary to assess the energy flow between the NES and the
Linear Oscillator (LO) to evaluate the NES’s performance.
A novel methodology to visualize various energies is pre-
sented for NES in [20]. Wei et al. [21] developed a mod-
ified optimal equation to improve the efficiency of NES in
pulse excitation with relatively low damping. The numer-
ical verification confirms that the energy dissipation is al-
most constant with optimal TET under various impulse exci-
tations. The performances of several types of NES, such as
bistable NES, piecewise NES, rotary NES and vibro-impact
NES are investigated under the initial induced impulse en-
ergy in detail [22]. Among them, the enhanced single side
vibro-impact NES shows the best performance in reducing
the induced impact acceleration. It has been concluded that
deeper and more widely separated wells on the potential sur-
face in the case of bistable NES require more input acceler-
ation to produce voltages [23]. The modified bistable NES
can absorb input shock energy with high efficiency [24]. A
procedure to tune a bistable NES and the effects of parame-
ters that efficiently mitigate oscillation of LO for more than
one vibration mode are described [25].

The present article is organized as follows. In Section 2,
the conservative systems of cubic and bistable NES are pre-
sented. The assumption of 1:1 resonance is applied through-
out the paper. The frequency-energy relation is described
with its variety of negative stiffness and nonlinear stiffness.
In Section 3, the non-conservative system with harmonic
force is considered. The asymptotic analysis is developed
to distinguish the different regimes by applying the complex
variables method and multiple scales method. In Section 4,
the initial energy level required to trigger the SMR is com-
bined with the frequency-energy analysis of the conservative
system. The efficiency levels alter under a continuously in-
creasing excitation in cubic NES case. The analytical rela-
tion between the designed nonlinear stiffness and target ex-

Fig. 1. Schematic of primary structure (LO) and NES system

citations is proposed. The correction coefficient helps the
optimal stiffness functions better fit the numerical result. In
Section 5, the different potential energy trajectories separate
the response regime into four stages in the bistable NES case.
The chaos boundary of the damping parameters is studied by
Melnikov analysis. The optimal point is found in the transi-
tion between the SMR and the stable response. The robust-
ness of the design method facing the uncertainties of K and
δ is investigated. The last section mentions some noteworthy
conclusions.

2 Frequency-energy analysis for conservative systems
The target system is described schematically in Fig. 1.

The LO m1 is excited harmonically through the linear stiff-
ness k1 and connected with NES mass m2 by a linear stiffness
k2 and nonlinear stiffness k3. The c1 and c2 are the damping
of LO and NES respectively. The motion equation is:

m1ẍ+ k1x+ c1ẋ+ c2(ẋ− ẏ)
+k2(x− y)3 + k3(x− y) = k1xe + c1ẋe
m2ÿ+ c2(ẏ− ẋ)+ k2(y− x)3 + k3(y− x) = 0

(1)

The harmonic excitation is expressed as xe = Gcos(ωt).
If the linear stiffness value k3 is shifted to be zero or negative,
equation. (1) can describe the pure cubic and bistable NES.
By introducing the variables:

ε = m2
m1

,ω2
0 =

k1
m1

,K = k2
m2ω2

0
,δ = k3

m2ω2
0

λ1 =
c1

m2ω0
,λ2 =

c2
m2ω0

,F = G
ε
,Ω = ω

ω0
,τ = ω0t

(2)

the equations of motion can be rewritten as

ẍ+ x+ ελ1ẋ+ ελ2(ẋ− ẏ)
+εK(x− y)3 + εδ(x− y) = εF cosΩτ

εÿ+ ελ2(ẏ− ẋ)+ εK(y− x)3 + εδ(y− x) = 0
(3)

The main feature of NES is TET. It leads the energy of
the primary system to be transferred irreversibly to the NES
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and dissipated passively by the damping. The existence of
damping (energy dissipation) and nonlinearity is a prerequi-
site for the TET mechanism [2]. Therefore, TET cannot take
place in a conservative system.

The concept of Limiting Phase Trajectory (LPT) in the
strongly nonlinear regime is responsible for the strongest
possible TET in the weakly dissipative system. The station-
ary solution on the LPT corresponds to a special 1:1 res-
onance orbit, where the LO and NES oscillate with iden-
tical frequency. In the absence of damping, the 1:1 reso-
nance capture is mainly responsible for intensive energy ex-
change [16], so the conservative system is still an essential
basis for understanding and optimizing the TET mechanism.

To study the features of in-phase (S11+) and out-of-
phase (S11-) 1:1 resonance, the frequency-energy plot de-
picts the main backbone branch of these synchronous period
orbits. Initially, by assuming λ1 = λ2 = 0, F = 0, equa-
tion. (3) is converted into the Hamiltonian version. Then the
complex variables ψ1eiΩτ = ẋ+ jΩx and ψ2eiΩτ = ẏ+ jΩy
where j2 = −1 are introduced into Eqn. (3). This complex-
ification approach is also applied in [26]. The ψi represents
the ’slow’ complex part variation of amplitude, and the Ω is
the ’fast’ oscillation of frequency. By averaging over the fast
frequency, it gives:

ψ̇1− iδε(ψ1−ψ2)
2Ω

− iψ1
Ω

+ iΩψ1
2 + 3iKε

8Ω3

(
ψ2

2ψ̄2−ψ2
1ψ̄1

+ψ2
1ψ̄2−ψ2

2ψ̄1−2ψ1ψ2ψ̄2 +2ψ1ψ̄1ψ2
)
= 0

ψ̇2 +
iδε(ψ1−ψ2)

2Ω
+ iΩψ2ε

2 + 3iKε

8Ω3

(
−ψ2

2ψ̄2 +ψ2
1ψ̄1

−ψ2
1ψ̄2 +ψ2

2ψ̄1 +2ψ1ψ2ψ̄2−2ψ1ψ̄1ψ2
)
= 0

(4)

To study the evolution of amplitude, the polar forms
ψ1 = A1e jα1 and ψ2 = A2e jα2 are substituted. The A1, A2,
α1 and α2 are real modulations and represent the slow evolu-
tion of amplitudes and phases of 1:1 resonance. Obviously,
on the periodic solution branch S11±, the condition α1 = α2
is trivially satisfied according to [16]. Then Eqn. (5) is ob-
tained in the following forms:

ΩA1
2 −

εδ(A1−A2)+A1
2Ω

− 3
8

Kε(A1−A2)
3

Ω3 = 0
ΩA2ε

2 + εδ(A1−A2)
2Ω

+ 3
8

Kε(A1−A2)
3

Ω3 = 0
(5)

The approximate response x(τ) = (A1/Ω)cos(Ωτ) and
y(τ) = (A2/Ω)cos(Ωτ) can be obtained by solving the above
amplitude equation (Eqn. (5)). The amplitude of x(τ) and
y(τ) are given by: Y (Ω) = A1/Ω and V (Ω) = A2/Ω respec-
tively where:

A1 =
2
3

Ω3
√

K(Ω2ε+Ω2−1)(Ω4−Ω2δε−Ω2δ−Ω2+δ)
√

3ε

K(Ω2ε+Ω2−1)
2

A2 =− 2
3

√
3
√

K(Ω2ε+Ω2−1)(Ω4−Ω2δε−Ω2δ−Ω2+δ)Ω(Ω2−1)

K(Ω2ε+Ω2−1)
2

(6)
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Fig. 2. Frequency-energy plot for the different cubic stiffnesses K,
ε= 0.01, δ=−0.436, (K values are selected as 1000, 2000, 3000
and 4000 respectively, following the direction of the arrow). Zoomed
insert represents detailed curve trends in the region in the red frame,
near the frequency 1

.

The conservative energy of the system follows:

E(Ω) =
1
2

εδ(V −Y )2 +
1
4

εK(V −Y )4 +
1
2

Y 2 (7)

Combining the expression of Y and V , Eqn. (7) leads to
Fig. 2 and 3 under the influence of the different parameters.
The curve is divided into two branches by the forbidden zone
[5], where the ratio of two real positive amplitudes becomes
negative. The S11− exists only the upper branch (Ω > 1)

and the S11+ exists for Ω <
√

1
1+ε

. The saddle points on
the S11− can be calculated by deriving the conservative sys-
tem energy with respect to Ω, ˙E(Ω) = 0. The two real roots
correspond to the frequency of Ω1 and Ω2 of saddle point 1
and point 2, and their energy levels E1 = E(Ω1),E2 = E(Ω2)
(see Fig. 7). The unstable branch in energy range [E1,E2]
can be explained based on the LPT concept. The energy
interval [E1,E2] plays an essential role in TET mechanism
on the S11− branch. When the system satisfies the critical
condition [27], the slow flow produces two stable station-
ary points and one unstable one on the S11− branch of the
two-torus process, where the phase difference between the
variables x and y is equal to π, out-phase 1:1 resonance. In
this condition, the LPT coalesces with a homoclinic orbit.
By designing the proper parameter, the system has the most
conservative energy and highly intensive energy exchange.

Fig. 2 shows the influence of increasing K values on the
energy level of saddle point 2 and leads to E2 become higher.
A lower K can adapt to the higher energy level for efficient
TET. An interesting phenomenon is that the ratio of energy
interval E1/E2 is almost constant in Fig. 2, which shows the
parallel translation of the upper S11− branch on the logarith-
mic axis with the variation of K.

Increasing negative stiffness results in extending the dis-
tance between the saddle points [E1,E2] in Fig. 3. It improves
the performance of energy transfer for relatively high energy
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Fig. 3. Frequency-energy plot for the different linear negative stiff-
nesses δ (ε = 0.01, K = 1754, δ value is selected as 0, -0.2, -0.4
and -0.6 respectively, following the direction of the arrow). Zoomed
plot represents detailed curve trends in the region marked in red
frame, near the frequency 1

input. Hence, K and δ can be tailored to absorb certain input
energies.

3 Asymptotic analysis for non-conservative systems
The existence of damping causes the initial high input

energy to be dissipated over time. The various stages alter
according to a residual energy level [9]. The negative stiff-
ness helps the bistable NES maintain a capacity for passive
targeted energy transfer at low energy level [28].

With the existence of harmonic excitation (constant en-
ergy input), the different stages can be maintained. In cubic
case, the periodic response is activated until the threshold
force of SMR is achieved. If the excitation continues to in-
crease, the SMR disappears and returns to be a periodic re-
sponse again. In the bistable case, the response regimes are
divided into four stages according to [19]: (a) intra-well os-
cillation; (b) chaotic inter-well oscillation; (c) strongly mod-
ulated response; (d) stable periodic response.

To describe the above regimes precisely, the new vari-
ables v = x+ εy, w = x− y are substituted into Eqn. (3):

v̈+ ελ1
v̇+εẇ
1+ε

+ v+εw
1+ε

= εF cosΩτ

ẅ+ ελ1
v̇+εẇ
1+ε

+ v+εw
1+ε

+λ2(1+ ε)ẇ
+K(1+ ε)w3 +δ(1+ ε)w = εF cosΩt

(8)

Under the assumption of 1:1 resonance, the LO and NES ex-
ecute time-periodic oscillations with an identical frequency
of Ω. The Manevitch complex variables φ1eiΩτ = v̇+ iΩv,
φ2eiΩτ = ẇ+ iΩw are introduced into Eqn. (8). Only terms
containing the eiΩτ are left.

φ̇1 +
iΩ
2 φ1 +

ελ1(φ1+εφ2)
2(1+ε) − i(φ1+εφ2)

2Ω(1+ε) −
εF
2 = 0

φ̇2 +
iΩ
2 φ2 +

ελ1(φ1+εφ2)
2(1+ε) − i(φ1+εφ2)

2Ω(1+ε) + λ2(1+ε)φ2
2

− 3iK(1+ε)φ2
2φ2

8Ω3 − εF
2 −

iφ2δ(1+ε)
2Ω

= 0

(9)

The periodic solution of Eqn. (9) can be calculated under
the assumption that the derivative is zero. By extracting the
expression of periodic solution φ10 substituted by variables
φ20 and then introducing it into the second equation of (9), a
more convenient expression can describe the system, where
Ω = 1.

K2
α3Z3

20 +Kα2Z2
20 +α1Z20 +α0 = 0, Z20 = |φ20|2 (10)

where

α0 =−
1
4

(
ε2λ2

1 +1
)

F2(1+ ε)2

λ12 +1

α1 =
1
4

(
λ2

1λ2
2 +λ2

1 +2λ1λ2 +λ2
2
)
(1+ ε)2

λ2
1 +1

,

α2 =−
3
8
(1+ ε)2λ2

1

λ2
1 +1

,α3 =
9

64
(1+ ε)2

(11)

To obtain the analytical threshold value for SMR, a per-
turbation method and the multiple scales method are used
with respect to the small parameter ε≈ 1%

φi = φi (τ0,τ1, . . .) ,
d
dτ

= ∂

∂τ0
+ ε

∂

∂τ1
+ · · ·

τk = εkτ, k = 0,1, . . .
(12)

Substituting Eqn. (12) into Eqn. (9), terms that contain
a coefficient of ε0 give:

d
dτ0

φ1 = 0
d

dτ0
φ2 +

1
2 i(φ2−φ1)+

1
2 φ2λ2− 3

8 iKφ2
2φ̄2− 1

2 iδφ2 = 0
(13)

Order ε1 (where σ is a detuning parameter defined as
Ω = 1+ εσ):

d
dτ1

φ1 +
1
2 λ1φ1 +

1
2 i(φ1−φ2)+ iσφ1− 1

2 F = 0
d

dτ1
φ2 +

1
2 λ1φ1 +

1
2 φ2λ2 +

1
2 iσ(φ1 +φ2)

+ 1
2 i(φ1−φ2)− 3

8 iK(1−3σ)φ2
2φ̄2− 1

2 F + 1
2 iδ(σ−1)φ2 = 0

(14)

4 Cubic NES response regimes
The cubic case is defined by setting δ = 0. To study the

stable amplitude of LO and NES, the new variables φ1 (τ1) =
N1eiθ1 , φ2 (τ1) = N2eiθ2 are introduced into Eqn. (13) and
the derivative term is set to zero. It gives an expression that
describes the topological structure of the SIM of a cubic sys-
tem:

Z1 = λ
2
2Z2 +Z2−

3K
2

Z2
2 +

9K2

16
Z3

2

Z1 = N2
1 , Z2 = N2

2

(15)
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Fig. 4. Case a: Cubic NES response under low energy input
(G=0.022mm). Subplots (a) and (b) represent the time-displacement
response, the red curve is the reconstructed envelope amplitude (c)
reconstructed trajectory projection (blue) in SIM structure (red)

The SIM is shown in the red line in the right side of Fig. 4.
It represents the intrinsic property of the system and its in-
dependence with respect to external excitation. The red line
envelope in the left figure is the reconstructed w and v origi-
nating from Eqn. (9).

In the cubic NES, the SMR is an essential characteris-
tic. The detailed description of the SMR and its stability has
been investigated in [29]. The SMR should satisfy some con-
ditions to be trigged. The force threshold interval has been
indicated in [11, 30]. Since the excitation is at the same fre-
quency as the natural frequency of the primary system and
the mass ratio is sufficiently small (ε << 1), the effect of the
detuning parameter and the mass ratio is beyond the scope of
this work.

According to [11], the excitation thresholds Gic are
given by:

Gic =

εN2,i

(
9λ1K2N4

2,i−24λ1KN2
2,i +16

(
λ1 +λ2 +λ1λ2

2
))

4
√

9K2N4
2,i−24KN2

2,i +16+16λ2
2

(16)

Z2,i = N2
2,i =

4
9

2∓
√
−3λ2

2 +1

K
, i = 1,2 (17)

The Z2,1 and Z2,2 are the values of Z2 at saddle point
B and D in Fig. 6. The values of the parameters such as
ε = 0.01,λ1 = 1.67,λ2 = 0.167,K = 1754 are fixed in the
cubic case. When the harmonic excitation is too small to ac-
tivate efficient energy pumping, the response of LO and NES
appears to be a periodic response with constant amplitude as
in Fig. 4. There is only an ordinary fixed point on the phase
portrait of the SIM. The trajectory of amplitude in the time
domain rises along the SIM over time, and its final point E
is located on left the SIM stable branch. With the increasing
harmonic force, the final stable amplitude point E, is closer
to the jumping point, B, before ’jump’.

When the excitation exceeds the critical value of excita-
tion G1c, a saddle node bifurcation occurs. The existence of
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Fig. 5. Case b: Cubic NES response under mid energy input
(G=0.028mm). Subplots (a) and (b) represent the time-displacement
response, the red curve is the reconstructed envelope amplitude (c)
reconstructed trajectory projection (blue) in SIM structure (red)
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Fig. 6. Case c: Cubic NES response under high critical energy in-
put (G=0.038mm), where SMR just disappears. Subplots (a) and (b)
represent the time-displacement response, red curve is the recon-
structed envelope amplitude (c) reconstructed trajectory projection
(blue) in SIM structure (red)

folded singularities results in the relaxation-type oscillation
phenomenon. The trajectory of the system in Fig. 5 has a
’jump’ motion between the two stable branches. A complete
’jump’ cycle consists of a trajectory A−B−C−D−A on the
SIM branch. The displacements on the stable branch for the
stage A−B and C−D coincide closely with the backbone
of the SIM, and the ’jump’ motion only appears in the B−C
and D−A stages. Once the trajectory returns to point A, a
new SMR cycle starts.

If the excitation continues to grow and surpasses the up-
per boundary G2c of SMR interval, the SMR disappears and
a regular fixed point occurs on the phase portrait of the SIM.
The regular fixed point corresponds to a periodic response.
The trajectory of the system in Fig. 6 arrives at the final sta-
ble point, E, located on the SIM stable branch, close to the
’jump’ point D of the right branch.

4.1 Influence of damping and stiffness on conservative
energy

To describe the conservative energy in a non-
conservative system, the critical energy level before the SMR
occurs and after it disappears are presented in Fig. 7. The
energy level when SMR appears (blue line) almost coincides
with the saddle point (ω1,E1), and the energy level when
SMR disappears (red line) is close to the endpoints of the
upper branch energy level E1. The conservative energy level
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when SMR disappears (red line in Fig. 7) is much lower than
that when SMR occurs. This shows that energy has been dis-
sipated through the SMR mechanism even if the input energy
continues to increase from E1 to E2.

The influence of the damping parameter on the con-
servative energy in the systems is analysed in Fig. 8. The
red curve is the SMR interval, which is an unstable re-
gion. Its stability is confirmed by Floquet theory. Under
the various damping parameters, the level of conservative en-
ergy necessary to trigger the SMR is almost constant, about
5.7×10−5J. For the energy level for SMR to disappear, the
λ2 have a more significant impact on the determination of
the critical value, the curve groups with the same λ2 result in
similar local minima.

To explain why the trigger conservative energy level is
the same under different damping conditions, a ’weak damp-
ing’ assumption is proposed, where λ2 tends to be zeros. On
the SIM, the ratio of the amplitude of LO and NES at the
jumping point B is 1.5. The exsitence of the small parameter
ε results in the conservative energy is mainly governed the
amplitude of LO, so it becomes E ≈ 1

2Y 2 = 8
81K . The trigger

energy level is determined mainly by the nonlinear stiffness
K.

In order to verify the correctness of this approximation,
the critical energy levels calculated using the different meth-
ods are compared in Tab. 1. The first column is the energy
level at the saddle point (E1,ω1). The stable amplitude of
LO and NES before the SMR appears is calculated using the
numerical method that forms the second column. The third
column is the predicted trigger energy level. In the same
nonlinear stiffness condition, the three critical trigger energy
levels are practically the same, which confirms that this ap-
proximation 8

81K is correct and is determined mainly by K.

It can be clearly observed that the conservative energy
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systems (ε = 0.01,K = 1754). The blue curve is calculated by
stable solution, the red curve is calculated by unstable amplitude, the
black dashed line represents the energy level 5.7×10−5J

Table 1. The comparison of SMR occurs energy level in different
nonlinear stiffnesses K cases

K Energy level Calculated trigger 8
81K

in saddle point energy level

2613 3.82e-5 3.81e-5 3.83e-5

1754 5.73e-5 5.71e-5 5.74e-5

871 1.15e-4 1.15e-4 1.15e-4

when SMR starts to occur is the same as the energy level of
a saddle point in Fig. 9, which shows the frequency-energy
relationship for different nonlinear stiffnesses. This means
that the conservative energy threshold at the saddle point can
be considered as an indication that SMR occurs. It is dif-
ficult to obtain an analytical expression for the energy level
at the saddle point based on the previous discussion. How-
ever, the simulations of different damping parameters and
different nonlinear stiffnesses in Fig. 8 and 9 reveal that the
SMR always happens when the system’s conservative energy
achieves its critical value. This critical energy level is deter-
mined mainly by the nonlinear stiffness K without consid-
ering the damping condition. This can help us predict the
occurrences of SMR without having precise knowledge of
the damping parameters.

4.2 Efficiency of cubic NES
To better understand the efficiency with which the in-

put energy is absorbed during the different stages, the energy
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dissipation ratio is defined in the time interval [τ0,τ] as:

ELO(τ) =
∫

τ

τ0
ελ1ẋ2dτ

ENES(τ) =
∫

τ

τ0
ελ2(ẋ− ẏ)2dτ

rNES =
ENES

ENES+ELO
100%

(18)

Figure. 10 shows that the 3 response stages are divided
by the analytical SMR interval [G1c,G2c]. When the input
energy (G < G1c) is too weak to activate the SMR, the mean
amplitude (Ae) and maximum amplitude (Am) coincide and
increase linearly with the force. Once the harmonic force is
strong enough to activate the SMR, the difference between
Am and Ae reveals that the amplitude of the NES is no longer
stable. In comparison with the previous stage, the NES pos-
sesses more energy. This is referred to as the TET mecha-
nism. Even though the external excitation is increasing, the
maximum amplitude of LO remains almost constant. When
the force exceeds the G2c threshold value, the curves of Am
and Ae coalesce again and become stable. With a slight in-
crease in force, the system achieves its maximum efficiency
point and the amplitude of LO is a local minimum, which
means that the full potential of absorbing energy has been
explored.

Considering N2,2 as the amplitude of NES at the transi-
tion point D, the optimal stiffness can be calculated by solv-
ing Eqn. (10) when a harmonic force F = G/ε is imposed on
the system:
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Fig. 10. Efficiency of cubic NES (a) the maximum amplitude (Am)
and mean amplitude (Ae) of LO (ε = 0.01,λ1 = 1.67,λ2 =
0.167,K = 1754), (b) Energy dissipation ratio of NES. Dotted lines
a, b and c in figures represent condition in Fig. 4, 5 and 6

K =− 4
729

1
α0

(
16
(
−3λ22 +1

)3/2
α3−108λ22

α2

−288λ22
α3 +81

√
−3λ22 +1α1

+144α2

√
−3λ22 +1+192

√
−3λ22 +1α3

+162α1 +180α2 +224α3)

(19)

The amplitudes of LO under different nonlinear stiff-
nesses and various harmonic forces are presented in Fig. 11
to check the accuracy of the predictions. The various nonlin-
ear stiffnesses are tested under a certain excitation to find an
optimal nonlinear stiffness K.

The thick red line corresponds to the numerical optimal
stiffness curve. It represents the projection of the minimum
amplitude that LO can have for a certain excitation in the
K−G plane. The thin red and blue lines are the maximum
and mean amplitudes respectively. The SMR occurs in the
region, where these lines do not coincide. The dotted and
dashed thick blue lines represent the analytical optimal stiff-
ness with and without correction coefficient ξ respectively.

An obvious trend is observed: a larger imposed force
(input energy) leads to a smaller designed nonlinear stiff-
ness. It confirms the conclusion obtained by a frequency-
energy analysis in a conservative system. There is a distance
between the real and predicted curves. The distance can be
interpreted as the errors between the analytical arrival point
D and real arrival point E in Fig. 6.

Ideally, once the SMR vanishes, the final stable solution
should be located at foleded point D. In fact, the simulation
demonstrates that the real final stable point does not coin-
cide with point D, but is slightly higher on the SIM. The
theoretical amplitude threshold Z22 may be smaller than the
simulated value Z2a, leading to errors between the analytical
and numerical K−G curves.
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Considering the correction coefficient ξ = 1.07 to de-
scribe the distance between the analytical arrival point Z2,2
and simulated arrival point Z2,a = ξZ2,2, ξ is introduced into
Eqn. (16) to resolve the K. The corrected predicted curve
(thick blue dotted line in Fig. 11) almost coincides with the
real optimal K−G curve.

The correction coefficient ξ helps improve the accuracy
in the prediction of the optimal stiffness. If the nonlinear
stiffness of the system exceeds the optimal value, then the
response of the system will remain stable. For example, the
nonlinear stiffness must be tuned to 1500 in order to min-
imise the amplitude of LO (5.3 mm) under excitation (G =
0.4 mm) (Fig. 11). When the K value is extended to 3400,
the LO possesses a minimum stable amplitude of 10.2 mm,
which is smaller than the mean amplitude of the LO during
SMR (10.26 mm). Thus, in the K-value range [1500, 3400],
cubic NES can achieve a better absorption performance than
SMR. A vast range of K can be chosen. When the system
faces uncertainties in the K value, it shows a strong robust-
ness. The absorption efficiency can be maintained at a rel-
atively high level if the stiffness is slightly larger than the
optimal value. Even if the value of K is lower than the opti-
mal value, the response is SMR, which is still considered to
be highly efficient.

When it reaches its ideal maximum efficiency point D,
the system has a periodic response and constant amplitude.
The response of w can be expressed as w = N2,2cos(τ+ δ1)
approximately. In the whole period (τ to τ+2π), the energy
dissipated by NES can be rewritten as:

∫
τ+2π

τ
ελ2ẇ2dτ =

∫
τ+2π

τ
ελ2

(
−N2

2,2 sin(τ+δ1)
)2

dτ

= ελ2N2
2,2π

(20)

As for the energy dissipated by the LO, the velocity
ẋ, the x can be expressed as x = v− εy, where the ε is an

extremely small parameter and leads to x ≈ v. So, at the
maximum efficiency point, x is N1,2cos(τ+ δ2). Similarly
to Eqn. (20), the energy dissipated by the LO in the whole
period is ελ1N2

1,2π. So the maximum efficiency point during
one period is

rNES =
λ2N2

2,2

λ1N2
1,2 +λ2N2

2,2
(21)

According to the Eqn. (17), from a theoretical point of
view, the above equation is finally turned into the following
form:

rNES =−
9λ2

−6λ1λ2 +2
√
−3λ2

2 +1λ1−2λ1−9λ2

(22)

This equation shows that the ceiling of maximum theo-
retical efficiency is determined only by the damping λ1 and
λ2. Subplot (a) of Fig. 12 depicts its maximum theoretical
efficiency values for different damping conditions. In fact,
the ideal amplitude of NES and LO for the instant the SMR
disappears shows some differences with simulation, which
leads to the error between the analytical maximum efficiency
value and the simulated value.

The distribution of parameters ξ in the λ1, λ2 plane can
be used to correct predicted maximum efficiency, shown in
subplot (b) of Fig. 12. The analytical value Z2,2 produces
greater errors than the simulated value Z2,a in the lower λ1,λ2
values. In contrast, the analytical value Z2,2 can better de-
scribe the arrival point Z2,a for a relatively high damping pa-
rameter. So the maximum efficiency value when considering
the correction coefficient ξ can be rewritten as:

rNES = 9λ2/(
(
4ξ2−6ξ

)√
−3λ2 +1λ1

+
(
−3ξ2 +9

)
λ1λ2

2 +λ1
(
5ξ2−12ξ

)
+9(λ1 +λ2))

(23)

The distribution of maximum efficiency based on
Eqn. (23) is illustrated in subplot (c) of Fig. 12. It demon-
strates that for certain fixed λ1, an optimal damping value λ2
exists to promote the energy-absorbing performance. Reduc-
ing the damping on the preliminary structure λ1 can enhance
the maximum absorbing efficiency value.

The three different damping conditions, labelled in sub-
plot (c) of Fig. 12 as condition 1, 2 and 3, are used to ver-
ify the analytical prediction of maximum efficiency. The
predicted values for condition 1, 2 and 3, are obtained di-
rectly by Eqn. (23) with different correction coefficients
ξ= 1.12,1.06,1.13 from subplot (b), are 77%, 71% and 53%
respectively. The direct calculations of maximum efficiency
of 76%, 68% and 52%, which are very close to the predicted
values. A simpler way to estimate maximum efficiency value
has been found.

To verify that the maximum absorbing efficiency val-
ues are independent of the optimal nonlinear stiffness design,
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various simulations are performed in the different damp-
ing environments, as shown in Fig. 13. Each point on the
excitation-efficiency line represents the maximum efficiency
value achievable for the corresponding optimal cubic stiff-
ness design with correction coefficients from Eqn. (19). For
every variation in excitation from 0.01mm to 0.1mm, the op-
timal stiffness design changes according to Fig. 11 but the
maximum efficiency value is almost constant. This phe-
nomenon indicates that the maximum ability to absorb en-
ergy is independent of the stiffness design. The stiffness de-
sign can only adopt a certain excitation input and its maxi-
mum efficiency is determined by the damping conditions.

According to Eqn. (22), the nonlinear stiffness K and
mass ratio ε do not influence the limit of maximum effi-
ciency. However, because the prerequisite of the above result
is the existence of SMR, the restrict of λ2 < 1/

√
3, and not

too high a mass ratio ε is still necessary [31].

5 Bistable NES response regimes
If δ is negative, Eqn. (8) can describe the motion of

bistable NES. The NES has two equilibrium points, one on
either side of the cubic NES original coordinate, with the
presentation of negative linear stiffness.
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Fig. 14. Potential function of the unperturbed system:(a) an intra-
well oscillation; (b) chaotic inter-well oscillation; (c) strongly modu-
lated response; (d) stable periodic response.

In our study, the second equation of bistable NES sys-
tem: ẅ+λ2ẇ+Kw3 +δw = ẍ can be expressed in following
equation with the definition λ2 = ελ̂2, ẍ = εx̂. It is necessary
to consider the acceleration term and damping term as small
perturbations to the Hamiltonian system.

{
u̇1 = u2

u̇2 =−δu1−Ku3
1 + ε

(
x̂− λ̂2u2

) (24)

The Hamiltonian system without perturbation and its poten-
tial function can be written as:

H (u1,u2) =
u2

2
2 +δ

u2
1

2 +K u4
1

4

U (u1) = δ
u2

1
2 +K u4

1
4

(25)

In the bistable case, the system is characterized by a
double-well potential energy surface, which is presented in
Fig. 14. Three equilibrium points exist: (u1,u2) = (0,0)
and (u1,u2) = (±

√
−δ/K,0). The K governs the span of

two wells 2
√
−δ/K (the distance between two equilibra)

and the depth of well ∆w = −δ2/4K. When the energy of
the NES is lower than ∆w, it will be trapped in one of the
two wells. So K and δ determine the lower boundary of en-
ergy above which bistable NES performs a cross-well oscil-
lation. In contrast to the influence of K, larger values of δ
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increase the span and depth of the potential well. Accord-
ing to the location of potential energy surface of bistable
NES, its response regimes can be classified in four following
stages. The parameters of this bistable NES case are fixed
as: ε = 0.01,λ1 = 1.67,λ2 = 0.167,K = 1754,δ =−0.44.

(a) Intra-well oscillation
When the energy is below the critical value, the poten-
tial energy is in one of the wells as in case a in Fig. 14.
Since the nonlinear stiffness is far larger than that of cu-
bic NES near the stable equilibrium, nonlinear beating
can be produced with relatively high efficiency for low
energy input.

(b) Chaotic inter-well oscillation
Once the input energy increases, the trajectory will pass
the pseudo-separatrix and oscillate between two wells,
therefore, chaos occurs. If the excitation continues to
increase, the SMR appears and mixes with the chaotic
oscillation. According to Fig. 15, the trajectory will
still cross the wells but will oscillate above the pseudo-
separatrix half of the time. The energy pumping will oc-
cupy more and more time. The chaos almost disappears
until the excitation exceeds the threshold value G2c.
On the other hand, the subharmonic 1:3 phenomenon,
which leads to a relatively low energy absorbing ratio,
has been confirmed in [32].

(c) Strongly modulated response
When NES amplitude continues to grow, the nonlinear
stiffness has a larger effect on the response behaviour.
The SMR response replaces the chaotic motion in the
time domain. In Fig. 16, the trajectory of the SMR is
more focused in a certain Hamiltonian energy height
range. Few trajectories pass the well. Returning to the
well is also necessary to restart a new turn of SMR.

(d) Stable response
The system reaches a stable state, and the SMR dis-
appears. In Fig. 16, the trajectory becomes a narrow
closed cycle, which means it has a constant amplitude
and reaches a stable response. The efficiency of the NES
reaches its maximum value between the transition from
the SMR stage to the stable response stage.
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5.1 Damping parameter boundary for chaos
Chaos in bistable NES is a complex behaviour. To bet-

ter predict the boundary of chaos response, a Melnikov an-
alytical method is applied in [28] to identify the chaotic be-
haviours. The Melnikov method is one of the few effective
ways to analyse homoclinic bifurcation and detect the occur-
rence of chaos. The Melnikov method describes the distance
between stable and unstable manifolds of the perturbed sys-
tem and can estimate the occurrence of global bifurcation
in the parameter space [18]. Before applying the Melnikov
method, the system is considered in a special form:

ż = f (z)+ εg(z, t); z =
{

u1
u2

}
∈ R2 (26)

where f (z) is a Hamiltonian vector and εg(z, t) is a
smaller perturbation, which does not require to be Hamilto-
nian. To analyse its stability near the equilibrium point, the
Jacobian matrix of the unperturbed system is expressed:

J =

[
0 1

−δ−3Ku2
1 0

]
(27)

Its eigenvalues are λ = ±
√
−δ−3Ku2

1. One of eigenvalues

λ1,2 =±
√
−δ has a pure positive real part near the fix point

(0,0), so this equilibrium points is a saddle. For the other two
fixed point (±

√
−δ/K,0), the eigenvalues are λ1,2 =±

√
2δ.

Because parameter δ is defined as a negative value, the eigen-
values are purely imaginary and these two fixed points are
centres. The unperturbed homoclinic orbit that connects the
saddle points is given by:

{
q0
+(τ) = (R · sech(Sτ),−RS · sech(Sτ) tanh(Sτ))

q0
−(τ) =−q0

+(τ)
(28)

where S = ±
√
−δ and R =

√
−2δ/K. The homoclinic

bifurcation describes the transverse insertion of stable and
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unstable manifolds of a saddle fixed point. It is an obvious
symbol of chaotic behaviours. This hyperbolic orbit distin-
guishes whether the phase diagram of the system is intra-well
oscillation or inter-well oscillation. When the potential en-
ergy arrives to its local maximum u1 = 0, the centre of the
phase trajectory shifts from a centre fixed point to a saddle
equilibrium, and chaos will occur. This transition is a result
of the change of excitation or the inner system parameter.
The homoclinic orbit breaks and may cross manifolds when
the perturbed terms are considered. For simplicity, the Mel-
nikov function can be expressed:

M (τ0) =

√
2
K

N1πΩ3

ε
sin(Ωτ0 +φ)sech

(
πΩ

2
√
−δ

)
± 4δ

√
−δ

3K
λ2

ε

(29)

The condition for traversing the intersection of stable
and unstable manifolds is satisfied when M(τ0) = 0.

∣∣∣∣∣
√

2
K

N1πΩ3

ε
sech

(
πΩ

2
√
−δ

)∣∣∣∣∣>
∣∣∣∣∣4δ
√
−δ

3K
λ2

ε

∣∣∣∣∣ (30)

λ2(1)<
3
√

2KN1πΩ3

4δ
√
−δ

sech
(

πΩ

2
√
−δ

)
λ2(2)>−

3
√

2KN1πΩ3

4δ
√
−δ

sech
(

πΩ

2
√
−δ

) (31)

In other words, with the above equation, the interval of
damping parameter λ2 required to avoid the occurrence of
chaos at the critical amplitude N1 can be determined. For a
designed amplitude of LO of N1 = 3mm, the threshold curves
are shown in Fig. 17. The critical value of damping λ2 equals
to 0.266, where the critical excitation force G = 0.091mm
and the natural frequency ω0 = 7.6Hz. In the region between
the threshold curves λ2(1) and λ2(2), the Melnikov function
changes sign and chaos occurs. Two different damping cases
are chosen to visualize the responses to verify the prediction
of chaos occurring. Both cases are compared with critical
curves in Fig. 18.

Case 2 corresponds to the point situated above the
threshold value, and the black phase trajectory of w is located
around one of the equilibrium points within the pseudo-
separatrix in Fig. 17. In this stage, the excitation is consid-
ered as low energy because it has a far larger nonlinear stiff-
ness than that of cubic stiffness. As the damping parameter
decreases to the chaos region, as in case 1, the displacement
of NES crosses the two equilibrium points. The phase tra-
jectory escapes from one potential well to the other, and the
chaotic behaviours are identified in Fig. 18.
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Fig. 17. Chaos boundary for λ2 with designed amplitude N1 =
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the natural frequency ω0 of the primary system
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By setting the different N1 amplitude requirements, the
boundary of chaos can vary. It is clear from the figure 19
that the region of chaotic behaviour between the two sur-
faces becomes larger as N1 increases. These conditions pro-
vide a domain in the parameter spaces, where the Melnikov
function changes its sign and the possible chaotic behaviours
happen. Meanwhile, the phase trajectory of NES will cross
the pseudo-separatrix. According to the amplitude of LO, the
result can predict and distinguish the formation of chaos and
can be used for the optimal design of bistable NES systems.

5.2 Efficiency analysis of bistable NES
Fig. 20 illustrates the performance of bistable NES and

its various stages with increasing excitation. The boundary
of chaos (G0c) can be obtained by the Melnikov method.
Due to the mixture of chaos stage and beginning SMR, the
analytical expression G1c can not describe the occurrence of
SMR. But the threshold excitation (G2c) is still helpful for
predicting the disappearance of SMR [19], which gives:
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The response regimes in Fig. 20 clearly show the intra-
well oscillation and stable response, which are divided by the
analytic prediction. Before it enters the chaos stage, the NES
exhibits a small amplitude response of oscillation around one
of the equilibria. In this stage, the amplitude of LO increases
almost linearly and the curves of Am and Ae coincide. How-
ever, the efficiency decreases rapidly with increasing excita-
tion.

In the second stage, the displacement of NES starts to
pass the two equilibria. The curves Ae and Am separate in
Fig. 20, and the distance becomes larger, which means that
the amplitude is not constant. With the introduction of SMR,
the distance between the Ae and Am becomes constant, con-
firming that the energy pumping occupies the whole time.
Moreover, the bistable NES performs a higher efficiency than
that of cubic NES because of higher speed, and more sig-
nificant stroke swept in the dynamic transition of negative
stiffness.

Once the SMR disappears, the curves of the Ae and Am
coincide again. The efficiency of the NES reaches its maxi-
mum value, where the LO amplitude starts to increase with
the growth of excitation amplitude. It is reasonable to believe
that the energy-absorbing capability is saturated.

For a given amplitude of excitation G, it can be con-
sidered an upper threshold of excitation G2c = G to achieve
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Fig. 20. Efficiency of bistable NES (a) the maximum amplitude
(Am) and mean amplitude (Ae) of LO for different excitation G (ε =
0.01,λ1 = 1.67,λ2 = 0.167,K = 1754,δ =−0.44) (b) energy
dissipation ratio of bistable NES. G0c is the excitation threshold for
chaos occurrence, G2c is the excitation threshold for SMR disappear

maximum efficiency. Then, by substituting the last two equa-
tions into the first equation in Eqn. (32), the optimal stiffness
expression Km is determined. Since the expression for Km is
complex, it is presented in the appendix. In order to com-
pare the numerical optimal stiffness with the analytical pre-
diction (32) under the given fixed excitation, various nonlin-
ear stiffnesses K are fully tested, and the result is presented
in Fig. 21. The thick red line is the projection of minimum
amplitude of LO in the K−G plane. The thick blue line is the
analytical prediction of K. The Fig. 21 illustrates an evident
tendance that smaller nonlinear stiffness can bear larger ex-
citation better. Without introducing the coefficient of correc-
tion, ξ, the analytical prediction can still describe the optimal
K−G curve with sufficient accuracy.

As with the efficiency analysis in the cubic case, the op-
timal point occurs in the stable response phase, where the
SMR vanishes. The limit efficiency of the optimal point can
be obtained from Eqn. (21), where the expressions of Z2,1
and Z2,2 are replaced by Eqn. (32). The following expression
is the estimation of maximum efficiency for bistable NES.

rbis−NES =
9λ2

2λ1µ(δ−1+µ)+12λ1λ2
2 +9λ2

(33)

where µ2 = δ2−3λ2
2−2δ+1.

Unlike Eqn. (22), the efficiency of bistable NES in-
volves the negative stiffness. Eqn. (33) becomes the same
as Eqn. (22), if δ = 0. For example, the predicted value
of maximum efficiency is 78% in Fig. 20. The maximum
efficiency value obtained by direct calculation is 75%. So
Eqn. (33) provides a simpler way to to estimate the maxi-
mum efficiency of bistable NES.
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5.3 Robustness analysis of optimal design method
In order to apply the optimal design in practice, it is es-

sential to consider the effect of uncertainties of design pa-
rameters on the system response. This kind of uncertainties
may come from the material properties and assembly errors
of the system. The impact of these uncertainties on the per-
formance of energy absorption, as well as on the reliabil-
ity and robustness of the spring NES device are investigated
in [33]. Under transient vibrations, the bistable NES has bet-
ter robustness compared to tuned TMD. [34].

In a mechanical system, the negative and nonlinear stiff-
nesses are usually coupled. The value of K is chosen from
1250 to 2750, and δ varies from -0.56 to -0.3. Let the target
harmonic excitation be fixed at G = 0.4 mm. According to
the optimal nonlinear stiffness function in the appendix, one
optimal value is obtained (K = 2000, δ = -0.43), where the
system has achieved the maximum efficiency of 75%. In the
vicinity of the optimal design, an obvious dividing line is ob-
served. The efficiency distribution shows a cut off on both
sides of the separatrix (dashed line in Fig. 22), calculated us-
ing the optimal stiffness function found in the appendix.

For quantitative comparison of the stiffness uncertain-
ties, the responses of two other parameters combinations on
each side (case A: K=1750, δ = -0.5 and case B: K=2200, δ

= -0.41) are also compared with the optimal design, which is
presented in Fig. 22. In the left half part of the parameters
plane, the designed system performs a SMR such as case A
in Fig. 23. Although the LO has an unstable amplitude, it can
be considered as efficient energy-absorbing, and the average
efficiency can be 62 %. In this region, the optimal design
of the bistable NES shows strong robustness. A variety of
K and δ ensures the occurrence of SMR and does not sig-
nificantly change the efficiency (about 62%). If the negative
stiffness is too low, it increases the duration of each SMR
cycle and consequently induces a decrease in efficiency.

If the system parameters are located on the right side of
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Fig. 22. Influence of design paramters K - δ on efficiency for exci-
tation G = 0.4mm. The green diamond corresponds to the optimal
design with K = 2000, δ = -0.43. Case A (red diamond): K = 1750, δ

= -0.5 and case B (blue diamond): K = 2200, δ = -0.41

the dividing line, the capacity to absorb energy is saturated,
and the response turns to be a periodic oscillation. The stable
amplitude of LO is 5.9 mm in case B and it is slightly larger
than 5.4 mm under optimal design in Fig. 23. In case B, the
efficiency of NES is still considerably high. The system’s
efficiency is more sensitive to variation in nonlinear stiffness
K. So the contour map of the efficiency distribution shows a
striped form on the right part. In this region, the system’s pe-
riodic response always possesses a higher efficiency than that
of SMR. Once the optimal design is fixed, the chosen K (of
the real system) should be slightlys larger than the calculated
value, in order to ensure a stable response. A descent of δ

also helps stabilise the response and achieve high efficiency
in the vicinity of the optimal design. Our optimal method al-
lows to determine the minimal but optimal stiffness required
for certain excitations.

6 Conclusion
The current study investigates the basic constraints on

the maximum absorbing efficiency limit for the optimiza-
tion of both cubic and bistable NES. Based on the response
regimes, the optimal point is selected by considering the en-
ergy absorbing efficiency. Several main conclusions can be
drawn:

1. The conservative system shows the same tendency as
the non-conservative system according to the variety of
negative stiffness and nonlinear stiffness. An increase
in nonlinear stiffness leads the frequency-energy back-
bone of the conservative system to move to a lower en-
ergy level. This implies that the corresponding NES sys-
tem can sustain a lower optimal energy input in a non-
conservative system. A bistable NES with stronger neg-
ative stiffness can produce SMR over a wider range of
excitation.
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2. When the SMR occurs, the conservative energy level of
the cubic NES system is always located at the saddle
point of the S11− branch. So this saddle point can be
considered as a indication that SMR occurs. A simpler
expression 8

81K can predict the critical threshold energy
for triggering the SMR mechanism. The simulations in
the case of different nonlinear stiffnesses confirm that
the trigger energy level mainly depends on the K de-
sign. Moreover, a critical damping value λ2 exists and
governs the occurrence of chaotic behaviours under cer-
tain design.

3. The analytical relationship between the optimal K value
and a certain excitation G has been given and verified
by simulation. The error between the analytical K−G
relation and the numerical result can be reduced by in-
troducing a correction coefficient ξ, which measures the
distance of saddle point Z2,2 from the simulated arrival
point Z2,a in the cubic case.

4. The emergence of the maximum efficiency point is sim-
ilar in the response regimes of both cubic and bistable
NES. It appears during the transition from the SMR re-
sponse to the stable response. Explained by SIM struc-
ture, the singular point Z2,2 represents the maximum ef-
ficiency point that this system can achieve. Based on
this characteristic, the expression of the maximum ef-
ficiency is found. The maximum efficiency value only
depends on the damping parameters λ1 and λ2 in cubic
case. The design of K determines the optimal absorb-
ing excitation amplitude G only, without influencing the
maximum efficiency level.

5. The performances of bistable NES cases, whose param-
eters are in the vicinity of optimal combination, are com-
pared to verify their robustness. A slightly larger value
of nonlinear stiffness than the calculated value can help
the system achieve its target excitation both for cubic
and bistable NES designs. The bistable NES can possess
a strong robustness facing the uncertainties of K, as long

as K value is within the optimal interval. This practical
strategy for choosing a proper combination of δ and K
helps the system maintain its maximum efficiency value.

7 Appendix
Optimal nonlinear stiffness

Km = 2
81

(
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where µ2 = δ2−3λ2
2−2δ+1
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