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0DD, United Kingdom

Abstract

This work presents a multiscale framework for the elasto-plastic response of platelets-like inclu-

sions reinforced nanocomposite materials. The solution of the heterogeneous material problem is

solved by a kinematic integral equation. An imperfect interface is introduced between the particles

and the matrix through a linear spring model LSM, leading to a modified Eshelby’s tensor. The

interfacial contribution, related to the strain concentration tensor within each material phase and

inside the average strain field, is described by a modified Mori-Tanaka scheme. The non-linear

response is established in the framework of the J2 flow rule. An expression of the algorithmic

tangent operator for each phase is obtained and used as an uniform modulus for homogenisation

purpose. Numerical results are conducted on graphene platelets GPL-reinforced polymer PA6

composite for several design parameters such as GPL volume fraction, aspect ratio and the interfa-

cial compliance. These results clearly highlight the impact of the aspect ratio as well as the volume

fraction by a softening in the overall response when imperfection is considered at the interface. Fi-

nally, a multiscale simulation is performed on a three bending specimen showing the capability of

the developed constitutive equations to be implemented in a finite element FE code.

Keywords: Interfacial imperfection, Graphene platelets, Micromechanics, Modified Eshelby’s

tensor, Modified Mori-Tanaka scheme, FE simulation

1. Introduction

Nanocomposites have gained worthy significance with use of multifunctional nano fillers like

the graphene. This latter finds direct applications in composites. Kuilla et al [1] reported graphene-

based polymer composites in which substantial property enhancements have been noticed at much

lower volume fraction with respect to polymer composites containing conventional micron-scale
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fillers (such as glass or carbon fibres). Graphene has been used to enhance mechanical properties of

metal matrix composites [2] for instance in aluminum composite materials where a small amount

of graphene nanosheets GNS or even reduced graphene oxide rGO could therefore increase the

overall composite physical properties greatly [3]. From a multiscale view point, an approach, for

deriving such properties, lies in the combination of molecular mechanics theories and continuum

models. The graphene properties are often derived at atomistic scale and the nano particles are

treated as equivalent continuum particles [4, 5] that are embedded in the matrix phase through

conventional homogenisation techniques.

Despite graphene has been used to increase stiffness, toughness and thermal conductivity of

polymer resins by a large margin [6–9], there are still much technological challenges to overcome

mainly in the material modelling. This is characterised by the lack of sufficient knowledge on

graphene composites for structural applications describing interfacial properties between graphene

and polymer matrix under severe loading conditions. It is well-known that the interface charac-

terises the load transfer between the particles/fibres and the matrix. Therefore, it represents an

influential parameter that can significantly change the overall properties. Indeed, interface is sub-

jected to defects (debonding, dislocations and cracks) between reinforcements and the matrix and

can be identified as one of the predominant damage mechanics in particle and fibre-reinforced

composites [10].Then, the accuracy of the composite response needs a proper accounting for the

properties of the interface. Several micromechanics models have been developed for that purpose.

Among them, one can distinguish the interphase models as well as interface models. The firsts i.e

the interphase models introduce the interfacial zone as a layer (with a given tickness and proper-

ties) between the particle or fibres and the matrix. First interphase model known as "‘three-phase

model"’ are due to Walpole [11] and then followed by works by Christensen and Lo [12], Hervé

and Zaoui [13], Cherkaoui et al. [14] and Lipinski et al. [15]. The seconds i.e the interface models

introduce discontinuites in the displacement and/or stress fields at the interface. One can refer to

cohesive zone models CZM (Matous and Guebelle [16], Inglis et al. [17], Tan et al. [18, 19]),

free sliding model FSM (Ghahremani [20]) and interface stress model ISM (Sharma et al. [21],

Sharma and Ganti [22],Sharma and Wheeler [23], Duan et al. [24, 25]) as well as linear spring

model LSM (Hashin [26, 27], Qu [28, 29], Zhong and Meguid [30]). Other models for instance,

the Gurtin-Murdoch model in works by Nazarenko et al.[31] as well as the discolation-like ap-

proach in works by Yu et al. [32, 33] and finally the equivalent inclusion concept in works by

Zhao and Weng [34, 35] which later have been used by Yanase and Ju [10] to study the damage
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response of spherical particles reinforced composites, should be cited.

This work aims to analyse the effect of an imperfect interface on the non linear response of

graphene platelets GPL composite materials. The properties of the GPL which have been widely

derived at atomistic scale are not the scope of this work. Herein, advantage is taken of these

derivations by considering GPL as continuum phases interacting with the polymer matrix through

a slightly weakened interface. The LSM model is then considered for its simplicity and flexibility

to treat imperfect interface with limited number of model parameters [10]. The solution of the

heterogeneous material problem is obtained by the kinematic integral equation of Dederichs and

Zeller [36]. The non linear framework, which is that recently used by Azoti et al. [37, 38], is based

on a Hill-type incremental formulation and the classical J2 flow rule. Therefore, for each phase,

the consistent (algorithmic) tangent operator is obtained from the continuum (elasto-plastic) tan-

gent operator and thus from works by Doghri and Ouaar [39]. By accounting for the contribution

of the interface, on the one hand inside the strain concentration tensor of the inclusions through

the modified Eshelby tensor [28, 29], and on the other hand in the average strain field , a modified

version of the Mori-Tanaka is derived for the effective properties.

The paper is organised as follows: section 2 establishes the general framework of a multiscale

homogenisation by deriving the global strain concentration tensor; in section 3, the algorithmic

tangent operators deriving from the classical J2 flow theory are recalled. Section 4 gives expres-

sions of the imperfect interface in terms of traction and displacements as well as the modified Es-

helby’s tensor while section 5 derives the modified Mori-Tanaka scheme for overall responses. The

model predictions are therefore compared with open literature data in section 6 where a system-

atic analysis of micro parameters (aspect ratio, volume fraction, interfacial compliance) is carried

out for a GPL-reinforced polymer PA6 under uniaxial tests. Finally, a finite element FE multi-

scale simulation is performed to illustrate the capabilities of the developed constitutive equations

to simulate a macro model structure.

2. Methodology of the multiscale homogenisation

2.1. Kinematic integral equation

Let us consider a composite material consisting of N + 1 phases. The matrix (phase 0) can be

a specific constituent containing all remaining phases. To study this composite, a Representative
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Volume Element (RVE) is considered as illustrated by Figure 1. On the RVE boundaries, admis-

sible macroscopic static or kinematic loads are applied in the absence of body forces and inertia

terms. The micromechanics scale transition consists, firstly, in the localization of the macroscopic

strain tensor E through a fourth order global strain concentration tensor A(r) and, secondly, in

the homogenisation, which uses averaging techniques to approximate the macroscopic behaviour.

Note that A(r) remains the unknown parameter that contains all the information about the mi-

crostructure. The effective properties of the RVE are given by:

Ceff =
1

V

∫

V
c(r) : A(r)dV (1)

where c(r) denotes the local uniform modulus and V the volume of the RVE. The operator ":"

Figure 1: Illustration of platelets-like inclusions reinforced 3D random RVE.

stands for the tensorial contraction over two indices. The global strain concentration tensor A(r)

links the local strain ǫ(r) to the macroscopic strain E as follows:

ǫ(r) = A(r) : E (2)

The decomposition of the local uniform modulus into a homogeneous reference part cR and a

fluctuation part δc such as:

c(r) = cR(r) + δc(r) (3)

Equation (3) enables the derivation of the kinematic integral equation of Dederichs and Zeller [36].

In terms of strain fields, the kinematic integral equation reads:

ǫ(r) = ER(r)−

∫

V
Γ(r − r′) : δc(r′) : ǫ(r′)dV ′ (4)
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where ER(r) is the strain field inside the reference infinite medium and Γ(r − r′) is the modified

Green tensor.

2.2. Global strain concentration tensor based on Eshelby’s ellipsoidal inclusion

The kinematic integral equation (4) represents the formal solution the global strain concentra-

tion tensor is derived from. Based on an iterative procedure proposed by Vieville et al. [40], the

global strain concentration tensor AI(r) for a Ith phase of the RVE is given as:







AI(r) = aI(r) : (āI(r))−1

Ā
I
(r) = I

(5)

I represents the fourth order symmetric identity tensor and •̄ is the mean-field volume average of

•. The quantity aI(r) is the local strain concentration tensor with respect to the reference medium

such that:

ǫ
I(r) = aI(r) : ER (6)

The Ith concentration tensor aI is given by:



















aI0(r) = I

aIi+1(r) = [I + TII : (cI(r)− cR(r))]−1 : [I −
∑N

J=0,J 6=I TIJ : (cJ(r)− cR(r)) : aJi (r)]

I = 0, 1, 2, ..., N

(7)

with N the number of phases considered in the composite. In equation (7), aIi (r) represents an

approximation of the Ith concentration tensor at iteration i. TII and TIJ are the interaction tensors

in one-site (OS) and multi-site (MS) versions, respectively. Their general expression is:

TIJ =
1

VI

∫

VI

∫

VJ

Γ(r − r′)dV dV ′ (8)

The computational framework of TII and TIJ is proposed by Fassi-Fehri [41].

Let us suppose that the geometry of any phase within the RVE is ellipsoidal. The Eshelby’s inclu-

sion concept [42] assumes that the strain field inside an ellipsoidal inclusion is uniform. Therefore,

a characteristic function θ(r) can be defined such as [40]:

θ(r) =











1 if r ∈ VI

0 if r /∈ VI

(9)
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Based on equation (9) and the average strain field within an inclusion I such as:

ǫ
I =

1

VI

∫

VI

ǫ (r) dV (10)

the above kinematic integral equation (4) can be rewritten as:

ǫ
I = ER −

N
∑

J=0

TIJ : (cJ − cR) : ǫJ with I = 0, 1, 2, ..., N (11)

and the local concentration tensor Eq.(7) becomes:



















aI0 = I

aIi+1 = [I + TII(cR) : (cI − cR)]−1 : [I −
∑N

J=1,J 6=I TIJ : (cJ − cR) : aJi ]

I = 0, 1, 2, ..., N

(12)

In the case of OS version (most frequent developments in the literature) and for isotropic medium,

the interaction tensor TII can be deduced from the Eshelby’s tensor S such as TII = S : (cR)−1.

In such condition and neglecting the interactions among inclusion I and its neighbours J, i.e. all

the tensors TIJ = 0, the local concentration tensor aI reads more simple expression:

aI = [I + S : (cR)−1 : (cI − cR)]−1 with I = 0, 1, 2, ..., N (13)

Finally, the global strain concentration tensor AI is calculated by substituting equation (13) in (5).

Therefore, for any homogenization model defined by AI , the effective or macro-stiffness tensor

Ceff is given through a discrete form of the equation (1) by:

Ceff =
N
∑

I=0

fIcI : AI . (14)

with the volume fraction fI defined as:

fI =
VI

V
(15)

3. Non-linear tangent operators

Let us consider that one or more phases behave elasto-plastically within the RVE. Referring to

the work of Doghri and Ouaar [39], at least two tangent operators can be defined: the “continuum”

(or elasto-plastic) Cep tangent operator, which is derived from the rate constitutive equation, and

the “consistent” (or algorithmic) Calg tangent operator, which is solved from a discretisation of

the rate equation in time interval [tn, tn+1]:






σ̇ = Cep : ǫ̇

δσn+1 = Calg : δǫn+1

(16)
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The explicit expressions of the tangent operators are derived from the classical J2 flow rule such

as:






Cep = Cel −
(2G)2

h N ⊗ N

h = 3G+ dR
dp

(17)







Calg = Cep − (2G)2 (∆p)
σeq

σtrial
eq

∂N
∂σ

∂N
∂σ = 1

σeq

(

3
2Idev − N ⊗ N

)

(18)

In equations (17) and (18), G denotes the material shear modulus while the operator "⊗" des-

ignates the tensorial product. Cel represents the elastic stiffness tensor and R(p) is the hardening

stress with p the accumulated plastic strain. N represents the normal to the yield surface in the

stress space. σtrial
eq denotes a trial elastic predictor of σeq. Idev stands for the deviatoric part of the

fourth order symmetric identity tensor. The knowledge of internal variables such as ∆p and σtrial
eq

remains crucial for computation of the algorithmic tangent operator (18). This tangent operator

will be used later as uniform modulus to compute the overall behaviour of the composite in section

5. A detailed procedure about internal variables computation can be found in [38].

4. Imperfect interface and the modified Eshelby’s tensor

Let us consider the interface γ between two phases of a composite material. The linear spring

model LSM supposes the continuity of the traction vector across the interface while the jump of

displacment field is consedered to be proportional to the traction on that interface. These assump-

tion are written like:






∆σijnj = [σij (γ
+)− σij (γ

−)]nj = 0

∆ui = [ui (γ
+)− ui (γ

−)] = ηijσjknk

(19)

with nj the components of a unit vector normal to the interface. ui (γ
+) and ui (γ

−) stand for the

values of ui (x) as x reaches the interface from outside and inside of the inclusion respectively.

σij (γ
+) and σij (γ

−) are the dual in terms of stress. The second order tensor components ηij

denote the compliance of the interface. It appears that ηij = 0 leads to a perfectly bonded interface

whereas ηij −→ ∞ represents a completely debonded interface. The expression of ηij is given by

[28, 29]:

ηij = αδij + (β − α)ninj (20)

where the constants α and β stand for the extent of interfacial sliding and the interfacial separa-

tion, respectively. δij is the Kronecker symbol. Indeed, α and β are the parameters related to the
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delamination and the debonding at the interface. When LSM is used for an imperfect interface,

these parameters can be estimated from the anti-interpenetration model AIM proposed by Wang

et al. [43]. Furthermore, works by Hashin [44] has demonstrated that the LSM for interface can

accurately approximate the thin and compliant interphase studied in [43].

In the case of ellipsoidal inclusions, Qu [28, 29] has determined the Eshelby’s tensor for these

inclusions embedded in an elastic matrix and showing a slightly weakened interface i.e when ηij

is very small. Therefore, the modified Eshelby’s tensor for this problem yields :

SM = S + (I − S) : H : c : (I − S) (21)

where S denotes the original Eshelby’s tensor [42] and H stands for a four order tensor depending

on the interface properties and the geometry of the inclusion. Expressions of components of tensor

H for ellipsoidal inclusions are given by:

Hijkl = αPijkl + (β − α)Qijkl (22)

where Pijkl and Qijkl are given for ellipsoidal inclusions by:



































Pijkl =
3

16π

∫ π
0

[

∫ 2π
0 (δiknjnl + δjkninl + δilnknj + δjlnkni) n−1dθ

]

sinφdφ

Qijkl =
3
4π

∫ π
0

[

∫ 2π
0 (ninjnknl) n−3dθ

]

sinφdφ

n = (nini)
1/2

n =
(

sinφcosθ
a1

; sinφsinθa2
; cosθa3

)T

(23)

In others terms, Eq. (21) can be written such as:

SM
ijkl = Sijkl + (Iijpq − Sijpq)Hpqrscrsmn (Imnkl − Smnkl) (24)

5. Modified Mori-Tanaka scheme for overall responses

General considerations on Mori-Tanaka scheme can be found in works by Azoti et al. [37].

Therefore, the MT effective properties are given by:

CMT =
N
∑

I=0

fIcI : AI = (f0c0 +
N
∑

J=1

fIcI : aI) : A0 (25)

with A0 the global strain concentration of the matrix. By accounting for the interface contributions,

modifications come out with the definition of the average strain field:

E =
1

V

∫

V
ǫ (x) dV =

N
∑

I=0

fIǫ
I +

1

V

∫

γ

1

2
(∆u ⊗ n + n ⊗∆u)dS (26)
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where γ represents the union of all interfaces. The combination of Eq.(19)-b and Eq.(26) leads to

the following expression of the average strain:

E =
N
∑

I=0

fIǫ
I +

1

V

N
∑

I=1

∫

γI

1

2
[(η.σ.n)⊗ n + n ⊗ (η.σ.n)]dS (27)

with γI the surface of the volume VI .

The evaluation of the integral terms in Eq.(27) remains tricky for an arbitrary interface geometry.

However by taking advantage of developments by Qu [28] for slightly weakened interface, the

stress distribution on the surface γI can be replaced by its average over the volume VI leading to a

simplified form of Eq.(27) such as:

E =
N
∑

I=0

fIǫ
I +

N
∑

I=1

fIHI : σI (28)

Using Eq.(5) and derivations in [37], one can demonstrate the following relationship between the

average strain within an inclusion and the matrix such as:

ǫ
I = aI : ǫ0 (29)

where aI in the OS-version yields:

aI = [I + SM : (cR)−1 : (cI − cR)]−1 with I = 1, 2, ..., N (30)

Combining Eq.(29) and Eq.(28) leads to

E =

[

N
∑

I=0

fIaI +

N
∑

I=1

fIHI : cI : aI

]

: ǫ0 (31)

The inversion of Eq.(28)

ǫ
0 =

[

N
∑

I=0

fIaI +
N
∑

I=1

fIHI : cI : aI

]−1

: E (32)

in conjunction with Eq.(2) leads to the modified global concentration tensor of the matrix A0 such

as:

A0 =

[

N
∑

I=0

fIaI +
N
∑

I=1

fIHI : cI : aI

]−1

(33)

Substituting Eq.(33) into Eq.(25) gives the modified Mori-Tanaka effective properties such as:

CMT
modified =

(

f0c0 +
N
∑

I=1

fIcI : aI

)

:

[

N
∑

I=0

fI : aI +
N
∑

I=1

fIHI : cI : aI

]−1

(34)

In the case a 2-phase composite, Eq.(34) yields

CMT
modified =

(

f0c0 + fIcI : aI
)

:
[

f0I + fI
(

I + HI : cI
)

: aI
]−1

(35)
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6. Numerical simulations

6.1. Model validations

The capability of the present model to reproduce results from the open literature is carried out

herein. In a first instance, the model predictions are compared with the earlier works by Qu [28].

Let us consider a composite consisting of an isotropic matrix and aligned isotropic ellipsoidal

inclusions (a1, a2, a3) with aspect ratio AR such as AR = a3
a1

and a1 = a2 = a. A pure sliding

case is considered i.e α 6= 0 and β = 0. The sliding interfacial separation constant α is given

such as α = aα0/µM with α0 the sliding coefficient and a the ellipsoid semi-axis. The material

properties for this analysis are gathered in Table 1.

Matrix Inclusions

µ0 [GPa] ν0 µI [GPa] νI AR α β

1.0 0.4 30 0.25 2.0 aα0/µM 0.0

Table 1: Material properties from works by Qu [28]

Figure 2 shows the evolution of the normalised effective transverse ans longitudinal Young

modulus E11/µ0 and E33/µ0 as well as the effective longitudinal Poisson’s ratio ν31 versus the

volume fraction of the inclusions. These predictions are concerned with the originate Mori-Tanaka

scheme for perfect bonded inclusions denoted "MT", the originate MT using only the modified Es-

helby’s tensor denoted "MT, α0 = 0.3" and finally the modified MT using the modified Eshelby’s

tensor denoted "Modif. MT, α0 = 0.3". Different trends are obtained for the Young moduli and

the Poisson’s ratio. Indeed, the higher the inclusions volume fraction, the higher the Young moduli

E11/µ0 and E33/µ0. However, accounting for a pure sliding interface has led to a decrease of the

effective stiffness. For the Poisson’s ratio ν31, when a decrease is noticed for others methods i.e

MT and Modif. MT, α0 = 0.3, a parabolic trend is observed when a weakened interface Modif.

MT, α0 = 0.3 is accounting for with a minimum at fI = 0.3. A fair agreement is found between

the present predictions with respect to results by Qu [28] showing by the way the effectiveness of

the numerical integration method used for solving equations (23).

6.2. GPL-reinforced polymer PA6 composite materials

As application of the present development to polymer composite, a GPL reinforced PA-6 poly-

mer matrix is considered. Due to its hexagonal atomic structure, the graphene can display an
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Figure 2: Effective elastic moduli of ellipsoidal inclusions reinforced composite
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anisotropic behaviour as described by Shokriech et al. [45]. Moreover, it can also undergo a

non-linear elastic behaviour. This has been recently studied by Elmarakbi et al.[46]. However,

the dominant mechanical properties of graphene remain the in-plane behaviour which has been

demonstrated to be isotropic in works by Cho et al. [5]. Therefore, an elastic and isotropic be-

haviour is considered for the GPL. The PA-6 matrix is considered elasto-plastic with an isotropic

hardening power law defined as R(r) = hrm. The material properties is presented in Table 2. The

macro stress-strain response is studied under uniaxial loading. The loading is given in terms of a

macro stain increment ∆E = ∆E Ψ with Ψ = e1 ⊗ e1 −
1
2 (e2 ⊗ e2 + e3 ⊗ e3). The effective

response of the composite is assessed through different design parameters for instance the platelets

aspect ratio AR, the volume fraction fI and the interface sliding coefficient α0.

Matrix Inclusions

E0 [GPa] ν0 σY [MPa] h [MPa] m EI [GPa] νI

2.0 0.39 60.5 63 0.4 1000 0.22

Table 2: Material properties for GPL/PA-6 composite materials

Figure 3-a shows the evolution of the equivalent stress-strain response versus the AR. This

parameter has a significant impact on the effective response. Indeed, an increase of the effective

stiffness is noticed with the decrease of the AR. Lower values such as AR = 10−1 correspond-

ing to platelets-like shape show more effective reinforcement character than circular-like shape i.e

AR = 1.

In addition, the variation of the volume fraction fI is analysed in Figure 3-b. The predictions

reproduce a trend similar to the matrix for fI = 0 and subsequently shifts towards higher stress

with the increase of fI . The influence of the interface imperfection is analysed in Figures 4-a and

4-b. the higher the sliding coefficient α0, the lower and softer the effective stress-strain response as

shown by Figure 4-a. In Figure 4-a, the results obtained from a perfect interface and an imperfect

interface modelling are compared. the higher the volume fraction, the higher the gap between the

two responses and the lower the effective response that accounts for the interface imperfection.

6.3. Multiscale simulation on a three-point bending specimen

The developed constitutive equations are implemented through a multiscale simulation on a

three-bending specimen as described by Figure 5. Due to the symmetry of the problem, the sim-
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Figure 4: Study of interfacial parameters for a GPL/PA-6 composite
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ulation is performed on the half of the geometry. The mesh is composed of 1737 CPE4 elements

(Figure 6-a ). The loading point and the support points for the specimen are simulated by analytical

rigid surfaces [47]. A metal matrix Al is considered with an elasto-plastic behaviour while the GPL

are assumed isotropic. These material properties are summarised in Table 3. The boundaries con-

ditions are prescribed in terms of displacement at the loading point and enables a postprocessing

of the reaction force at that point versus the displacement.

Matrix Inclusions

E0 [GPa] ν0 σY [MPa] h [MPa] m EI [GPa] νI

75.0 0.23 75.0 416 0.3895 1000 0.22

Table 3: Material properties for GPL reinforced MMCs

Figure 5: Illustration of a multiscale bending specimen.

Figures 6b-f are concerned with the deformed specimen and show the contour plots of stress,

displacement and the accumulated plastic strain p. Figure 7 presents the evolution of the reaction

force versus the displacement at the loading point. Two volume fractions are analysed for this GPL

reinforced MMC and the simulation predictions are obtained for both the perfect and imperfect

cases. One can observe the decrease of the reaction force in the case of imperfect interface. As

obtained previously in the above section, the gap between both cases is sensitive to the GPL volume

fraction. The lower, the volume fraction, the lower, the gap.
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7. Conclusion

The elasto-plastic response of graphene platelets based composites has been analysed regard-

ing the interfacial behaviour. For such a purpose, the linear spring model LSM is considered for

its simplicity and flexibility to treat imperfection at the interface with limited number of model

parameters. Therefore, a modified expression is obtained for both the Eshelby’s tensor and the

Mori-Tanaka scheme for deriving the effective response of the composite.

Results carried out on GPL reinforced PA-6 polymer highlight the importance of the aspect

ratio. Most effective reinforcement is observed with low value of the aspect ratio. The sliding co-

efficient also show a significant influence on the overall behaviour along with the volume fraction.

Indeed, the higher the volume fraction, the higher the softening in the stress-stress response. The

capabilities of the model to be implemented in a FE code is demonstrated on GPL reinforced metal

matrix composites.

As an outlook, results of this study are expected to be integrated in the design of new graphene

based composite for automotive applications. The influence of the sliding coefficient α0 in a multi-

scale crashworthiness simulation is of interest by studying the strain energy absorption SEA.
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Research Highlights

• The linear spring model is considered for studying the interfacial imperfection;

• The overall properties are derived by a modified Mori-Tanaka scheme;

• Numerical results are performed for a graphene platelets GPL reinforced polymer compos-

ite;

• A FE multiscale simulation is implemented on a GPL reinforced metal matrix composite.
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