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Abstract

Background Digital Volume correlation (DVC) consists in identifying
the displacement fields that allow for the best possible registration of
volume images of a sample captured at various loading stages. With
cellular materials, the use of DVC faces an intrinsic limit: in the
absence of an exploitable texture on (or in) the struts or cell walls,
the available speckle pattern will unavoidably be formed by the mate-
rial architecture itself. This leads to the inability of classical DVC
techniques to measure kinematics below the cellular scale, i.e. at the
sub-cellular or micro scales. Objective Here, we extend a newly devel-
oped architecture-driven DIC technique [1] for the measurement of 3D
displacement fields in real cellular materials at the scale of the architec-
ture. Methods The proposed solution consists in assisting DVC by a
weak elastic regularization using, as support, an automatic finite-element
image-based mechanical model. Results Complex (locally buckling)
kinematics of a polyurethane foam under compression are accurately
measured during an in-situ test. The method is essential to evidence
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the class of dominance (stretching versus bending) of the foam. Con-
clusions The proposed method allows to confirm that the foam used
is bending-dominated, which is not possible with a classical meso-
scopic DVC approach. This method is a good candidate for the analysis
of complex local deformation mechanisms at the architecture scale.

Keywords: Digital Volume Correlation (DVC), Multigrid image registration,
X-ray microtomography, Image-based mechanical modeling, Mechanical
regularization, Cellular materials, Polyurethane foam

1 Introduction

Architected materials are excellent candidates for the design of multifunc-
tional structures with outstanding specific properties [2, 3]. However, since
such materials are characterized by the coexistence of, at least, two very dif-
ferent scales, the prediction of their mechanical behavior in non-linear regimes
remains a challenge [4]. This is especially true for synthetic materials such as
foams due to their random architecture. Indeed, the local response is obvi-
ously eminently linked to the local architecture. But the same type of question
arises for additively manufactured materials, as the effect of defects induced by
the process should be taken into account in the models [5, 6]. In this context,
X-ray micro-computed tomography (µ-CT) emerges as an imaging modality
perfectly adapted to the study of the behavior of such materials [7]. Specimen-
specific image-based models can be built from volume images of a specimen
which accounts for its actual geometric architecture and defects. [8–13]. In
addition, other images captured at different loading steps during in-situ test-
ing [14] now provide access to valuable volumetric kinematic information using
digital volume correlation (DVC) [15]. For instance, the exploitation of DVC
displacement fields as boundary conditions in numerical simulation is essential
to achieve a proper test/simulation comparison [16, 17]. Next, a strengthened
DVC/simulation dialogue clearly opens the way to model validation [17, 18]
and constitutive parameter identification [19, 20].

The most common approach to DVC remains the local or subset-based
approach [15, 21]. It has the advantage of being highly parallelizable. How-
ever, the use of such an approach to establish the experiment/simulation link
is tricky at the scale of architectural details especially in the non-linear regime.
There are at least three reasons for this.
First, the architecture does not provide sufficient grey-level distribution in gen-
eral so that the architecture itself usually constitutes the only usable pattern
for DVC. The minimum size of the subsets will then be limited by the char-
acteristic length of the architecture. For example, for a cellular material, the
minimum subset size will usually be of the order of the cell size. This con-
stitutes a real bottleneck in terms of spatial resolution. The subset size will
consequently be much larger than the element size used in the simulation.
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Second, the generic shape functions used in the registration process are unlikely
to correctly capture the actual complex kinematics which is strongly related
to the underlying moving architecture. In foams, for instance, local crushing is
common during compression tests [22]. Standard interpolation functions would
then introduce a significant model error [1] as they are completely unable to
consider such strong evolutions of the pattern. It would of course be possible
to use incremental DVC [23], but this would induce a measurement bias and,
probably, a larger number of tomographic acquisitions.
Last, the process only gives access to a scattered displacement field at the
subset centers. The connection with finite-element (FE) models is not direct.
In the remainder, for the sake of simplicity, mesoscale will (abusively) refer
to the scale of the cell, whereas microscale will correspond to the scale of the
struts. While most of the existing DVC analyses are limited to mesoscale, to
our knowledge, only one article reported an attempt to measure kinematics at
the trabecula scale in a trabecular bone [24].

In order to bridge experiments and simulation more easily, another
approach of the DVC, referred to as global or FE-based, was introduced [25].
It is particularly convenient in the sense that the same type of kinematic
description as the one used in the simulation tools (e.g. usually finite elements)
can be used directly in the measurement. However, as with the subset based
DVC, for most cellular materials imaged by conventional µ-CT (i) the min-
imum element size for performing a FE-DVC measurement is limited by the
characteristic size of the architecture and (ii) the usual FE shape functions
do not properly describe the underlying kinematics. While a refined image-
based boundary fitted mesh would be convenient to describe the complex local
kinematics, its direct use in standard FE-DVC would not be possible. This
is because the elements would be too small with respect to the pattern and
the vanishing of greyscale gradients within the elements would make the DVC
problem ill-posed. However, global DVC has the advantage that it can be
regularized a priori. Some authors have proposed, for instance, to use regu-
larization schemes, based on second-order Tikhonov operators, to compensate
the lack of texture in cellular materials such as trabecular bone [26].

In the following, we extend the approach introduced and validated in 2D
digital image correlation (DIC) in [1] to the DVC analysis of a complex in-situ
compression test on a polymeric foam. This method consists in imposing that
the sought-after micro displacement field should be mechanically consistent
[27, 28]. A weak regularization based on a Tikhonov approach [29, 30] is thus
used based on the equilibrium gap [31]. The weight given to the mechanical part
introduces a characteristic length of regularization below which the mechanical
part takes precedence, while above it the image pulls the correlation.

In other existing mechanically regularized DVC approaches, it is common
to rely on macroscopic (or homogenized) models whose mesh does not conform
with the micro-structure [32]. The subsets or finite elements are larger than
the architecture scale which usually does not allow for a proper representation
of the underlying micro kinematics. Conversely, the proposed approach aims
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at estimating complex local kinematics at the scale of the architecture of the
material with no a priori on the model or on the geometry of the sample. In
other words, our assumption is that the grey levels carry a mechanical infor-
mation that is used to help regularize DVC. It is a challenge when working
with random architecture materials like foams since the geometry is specific
to the sample and most importantly unknown. It thus requires fine meshing
strategies to build a sample-specific image-based geometric and mechanical
model at the architecture scale (i.e., describing a representative architecture)
from the images. In addition to the regularization length and the choice of the
mechanical modelling (and boundary conditions), the choice of the parameters
of the geometric modelling (threshold, mesh size) has to be done carefully as
a trade-off between computational cost and mechanical approximations. This
work done in 2D-DIC [1] has shown that by choosing correctly these parame-
ters with the general rules (length of regularization related to the size of the
cell, fineness of the mesh fixed compared to the size of the pixel), the method
was able to capture complex non-linear local phenomenon (despite the sim-
ple behaviour assumption). In this work, we generalize the previous 2D study
of [1] to 3D. The potential of this extension is highlighted by measuring the
locally complex 3D kinematics resulting from crushing in a polyurethane foam
subjected to an in-situ compression test. The presented experiment and the
corresponding image set are very challenging for DVC analysis because the tex-
ture deforms at a scale smaller than the subset (or element) size. The obtained
displacement fields are compared to those provided by standard mesoscale reg-
ularized FE-DVC approach. The level of deformations between the reference
image (taken at rest) and the following images is such that a particular strat-
egy is necessary to initialize DVC. Moreover, as microscale DVC measurements
require high hardware resources, a high performance parallel implementation
is required.

Cellular or porous architected materials have two main deformation modes
depending on the nature of their local architecture. Indeed, depending on
whether they are stretching-dominated or bending-dominated, their macro-
scopic behavior, their stiffness and their use differ significantly [33, 34]. Indeed,
bending-dominated materials form the majority of materials and particularly
foams. Stretching-dominated materials have a much higher specific stiffness.
We show that the proposed DVC method contributes to better analyzing in the
bulk the nature (bending versus stretching dominance) of crushing mechanisms
inside open cell polymeric foams.

2 Sample, Experiment and Instrumentation

2.1 Material, specimen and motivations

The selected porous material is a polyurethane foam. The in-situ tests carried
out in the X-ray µ-CT scanner and presented hereafter aim at identifying the
spatial distribution of the mechanical properties in relation with the local archi-
tectural properties (e.g. the local porosity). One first step towards realizing
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this long term objective is to incorporate a DVC analysis in the identification
framework. The main purpose of this work is to raise the challenge of mea-
suring displacement fields at the scale of the architecture in real-word cellular
materials . The foam had a porosity V (void)/V (total) equal to 0.96. The mean
diameter of the cells was 500 µm with a standard deviation of ±200 µm. As
illustrated in Fig. 1, the tested sample had a cylindrical shape with a diameter
of 9 mm and a height of 10 mm.

Fig. 1 Physical dimensions of the chosen cellular sample.

2.2 Experiment and µ-CT acquisition

A compression machine was specifically designed and used in order to perform
the in-situ test (see Fig. 2). For this setup, an electric cylinder was used in
order to apply the mechanical load. The capacity of the load cell used was 50N .
A reference scan was carried out, specimen mounted, before starting the test.
Then the loading was interrupted several times in order to allow the sample to
be scanned. Each scan lasted approximately 40 to 50 min. The four stages of
loading considered corresponded to an overall strain of the order of 3.4%, 5.2%,
12.3% and 28.5%. In total, the starting point of our DVC analysis is the five
reconstructed volumes of the foam (i.e. the image of the reference configuration
denoted Ir and the four images of the deformed configurations denoted Id).
Fig. 3 shows the rendered volumes of these configurations. The visualization of
the different loading states is performed using the Paraview software [35, 36].
It takes, in this case, as input, the different VTU (Unstructured VTK) files
of the surface representation of the segmented volume. Finally, the different
parameters of the µ-CT acquisition are synthesized in Table 1.

3 DVC methodology

In this work, we will carry out two types of analysis. The first one, referred to
as mesoscale DVC, can be seen as the classic approach in the field. It makes use
of a global DVC approach [25] based on rather coarse and regular meshes of the
whole specimen, i.e. that each element includes several cell-struts and void of
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Fig. 2 Experimental setup of the in-situ compression test using X-ray µ-CT.

Table 1 DVC acquisition parameters

Parameters Information

CT device Ultratom RX solutions
Source 230kV
Voltage 50kV
Current 200µA
Detector Varian 3 Mpixels
Encoding 16 bits
Memory size of one reconstructed scan 7.6 GB
Definition 1523× 1514× 1654
Number of scans 5 (1 Reference + 4 loadings)
Duration of each scan 45 min
Voxel size 6.67 µm
Target Reflexion target
Filter None
Tube to detector 865.6 mm
Source to object 35.5 mm
Number of projections 1600
Angular amplitude 360◦

Fig. 3 Rendering of the reconstructed volumes at the different loading states. (a) Reference
configuration and (b-e) Deformed configurations.

the foam. The second approach, which is the microscale DVC developed in this
paper, consists in an extension of the method proposed in [1]. It relies on weak
mechanical regularization [27, 28, 37, 38] and image-based modeling [10, 12].
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It benefits from the construction of a fine FE mesh that properly describes the
architecture of the foam. In this section, we start by outlining the fundamental
aspects behind DVC and then more precisely introduce the mesoscale and
microscale DVC methods.

3.1 Fundamental aspects

3.1.1 Grey-level metric

Given two grey-level images Ir and Id representing, respectively, the refer-
ence and deformed configurations of a material sample, DVC can formally be
expressed as the following optical flow equation [39]:

Find u : Ω ⊂ R3 → R3, such that Ir(x) = Id(x + u(x)), ∀x ∈ Ω. (1)

x defines the point coordinates in the reference region of interest Ω included in
the initial reconstructed volume. It was underlined in [40] that the formulation
(1) is a Lagrangian description of the optical flow while the formulation which
would consist in defining x in the deformed configuration would be an Eulerian
one. The grey-level conservation problem is generally ill-posed as it consists
in reconstructing a three-dimensional field only using a noisy scalar grey-level
field. Therefore, problem (1) is rather solved by minimizing a global grey-level
metric that can be chosen as the squared quadratic norm of the residual of
grey-levels. In addition, the unknown displacement field is discretized by means
of a set of basis functions. Overall, the DVC problem can be written as:

min
u∈Rndof

S(u) =

∫
Ω

(Ir(x)− Id(x + N(x)u))
2
dx, (2)

where N(x) ∈ R3×ndof is the considered shape functions matrix and u ∈ Rndof
is the vector that gathers the total (ndof) degrees of freedom (DOF). In this
work, we will consider FE-DVC [25, 28, 38, 41] since this is the starting point
to regularize DVC using a mechanical knowledge of the solution. The shape
functions gathered in N(x) are thus associated to a FE mesh which will be
composed of 4-node (linear) tetrahedral finite elements.

3.1.2 Optimization scheme

In the DIC community, problem (2) is usually solved using a modified Gauss-
Newton algorithm [42, 43] which leads to the following iterative scheme. Given
an initial displacement guess u(0), the solution u(k) at iteration k is updated
such as:

u(k+1) = u(k) + d(k) with HS d(k) = b(uk) and b(uk) = −∇S(u(k)).
(3)

∇S(u(k)) and HS are the modified gradient and Hessian matrix of S, respec-
tively, that involve the gradient of the reference image Ir only. For more details
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regarding the algorithm and implementation, the reader is referred to, e.g.,
[41–43].

It must be stated, at this stage, that system (3) may be singular if the
image gradient vanishes within the finite elements [44]. That is why a high
frequency black and white speckle pattern is usually sprayed on the specimen
surface in 2D-DIC [45–47]. This issue is central in DVC since it is hardly pos-
sible to add artificial speckle patterns in volume imaging [48, 49]. There are
basically two ways of performing DVC in such situations: strong or weak reg-
ularization. The first one aims at reducing the number of unknowns by either
increasing the size of the elements [15, 25, 50] or projecting the problem onto
an appropriate reduced basis [51–53]. The second approach consists in adding
a penalization term to functional (2) in order to improve its convexity [1, 26–
28, 37, 38, 54–57]. Both approaches aim at reducing the apparent dimension
of the minimization subspace of problem (2). In the following, the mesoscale
analysis will make use mainly of a strong regularization with coarse FE meshes
whereas the microscale analysis will rely on a fine-tuned weak elastic regular-
ization based on the construction of a fine FE mesh that properly describe the
architecture of the material.

3.1.3 Sub-voxel evaluation

In order to evaluate functional (2) and build the operators in (3), the sub-voxel
grey-level evaluation of the images is necessary. In this work, this is performed
using a B-spline representation of the volume images [58, 59]. It consists in
computing a new regular function Ĩ defined as:

Ĩ(x, y, z) =

l∑
i=1

m∑
j=1

n∑
k=1

Bi,p(x)Bj,p(y)Bk,p(z)ci,j,k, (4)

where Bi,p, Bj,p and Bk,p are the total l,m, n univariate B-spline functions of
degree p centered at each voxel. (x, y, z) is a non integer point in the image
domain [0, l]× [0,m]× [0, n]. The tensor c ∈ Rl×m×n represents the voxel grey-
level values. We should note that this image representation is not interpolatory
but has the advantage of preserving the image dynamic and removing the
oscillatory effects of global polynomial interpolation [59]. It has also the advan-
tage of not pre-computing interpolation coefficients which usually requires the
inversion of linear systems. The image gradients are also computed by simply
differentiating (4). This provides regular gradient fields even when the texture
of the considered specimen is poor.

3.1.4 Analysis of the correlation

In order to assess the quality of the correlation at convergence, the grey-level
residual field is a very interesting quantity to analyse. It is defined as follows:

r(x) = Ir(x)− Id(x + u(x)), ∀x ∈ Ω. (5)
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From (5), it is possible to build a global indicator equal to the standard devi-
ation of the distribution r. It is also very instructive to plot its distribution
on the material architecture to provide more information on the localization
of the potential mismatch.

3.2 Mesoscale DVC

When considering the global FE-DVC methodology, the finite-element size is
crucial and conditions the accuracy of the correlation. Since the texture in
DVC is necessary associated to the scale of the material constituents, large
finite elements are defined so that each point in the images is tracked along
with its close neighborhood. As stated before, the mesoscale DVC analysis is
performed mainly with the help of a strong regularization where the finite-
element size controls the amount of regularization. More precisely, each element
must contain sufficient grey-level variations, such that operator HS is not
singular [44].

In practice, the size of the elements can be related to the cell size of the
material. Indeed, the finite elements need to be sufficiently large to include
several struts, i.e. several speckle dots as prescribed in the literature [60].
The approximate cell size was first determined using the normalized radially
averaged auto-correlation function (see Fig. 4(a)).

The presence of a secondary peak in this function is evidence of a pseudo-
periodicity in the image texture. The position of this secondary peak is thus
considered as an approximation of the cell size, see the red dot in Fig. 4(a).
In our case, the value of 28 voxels was obtained which agrees with the
experimental value of 500 µm for the mean cell size (see Fig. 4(b)).

Fig. 4 Determination of the approximate cell size using the radially averaged normalized
auto-correlation function. (a) Auto-correlation function in the reference image that exhibits
a secondary peak around 28 voxels (red dot) and (b) Slice of the reconstructed volume stack.

Here, we rely on a cylindrical FE mesh of the whole material sample based
on tetrahedral meso elements that include both struts and voids. Fig. 5 shows
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the three mesh discretizations that were considered with an average element
size of 33, 23 and 12 voxels, respectively. Note that only the coarsest mesh
was such that the size of the elements exceeded that of the cells which is
required to perform a correlation with strong regularization alone. The two
finer meshes actually required the combined use of an additional weak reg-
ularization (Laplacian-based diffusion regularization technique). More details
about weak regularization will be given in Section 3.3.2.

Fig. 5 Three finite element mesoscale DVC discretizations. (a) 33 voxels, (b) 23 voxels and
(c) 12 voxels.

A very important aspect in image correlation is the determination of the
initial displacement guess. For the two first loading states (see Fig 3 again),
the initial displacement u(0) was set to zero and then a coarse-to-fine scheme
based on four levels of image binning was performed for the initialization.
This technique also known as multi-level (or multi-grid) initialization consists
in constructing a pyramidal refinement strategy for both the image and mea-
surement resolutions. The interested reader can find more details about these
strategies in [41, 61–65] to name a few. Roughly speaking, this process allows
to gradually filter the high-frequency components of the image so that the con-
vexity support of functional (2) is increased at the coarser levels. This helps
solving the minimization problem with an arbitrary initialization. However for
the third and fourth loading states, this strategy was not sufficient to make
converge correctly the Gauss-Newton algorithm. One successful strategy con-
sisted in using a structured mesh with few elements in the height direction and
running a DVC (also initialized with a coarse-to-fine strategy) to estimate a
first coarse displacement. This structured mesh, displayed in Fig. 6, covered
the whole image domain (including a part of the bottom and top platens).
The image signal given by the bottom and top platens helped the correlation
algorithm as they were subject to translation during loading. To summarize,
the first step of the correlation is performed with the mesh presented in Fig. 6
(hexahedral FE this time). The obtained displacement is then evaluated at
the nodes of the tetrahedral finite element meshes of Fig. 5 in order to get
the initial guess denoted w. Finally, in order to correctly re-scale this initial
guess, an additional tiny correlation (that converged in three iterations) was
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Fig. 6 Coarse grid used for the determination of an initial displacement guess.

performed using a reduced basis approach. In this case, the displacement incre-
ment d(k) was searched for as a projection onto a reduced basis. Let us denote
R the matrix gathering the reduced basis vector in column, in this case it is
computed as follows:

d(k) = Rααα(k) with RTHSRααα(k) = RTb(k). (6)

where ααα(k) are the scaling modes. The scaling matrix was defined as follows:

R =

wx 0 0
0 wy 0
0 0 wz

 ∈ Rndof×3. (7)

wx, wy and wz are the vector displacement blocks extracted from w (cor-
responding to the x, y, z directions, respectively). 0 is a zero vector of size
ndof .

3.3 Microscale DVC

The mesoscale approach of the previous section relies on coarse meshes which
can only estimate displacement fields that are homogenized at the scale of the
cells. As will be shown in the examples, the use of large elements that include
both struts and voids, makes it impossible to properly describe the highly
complex local kinematics that occur during the compression test (large defor-
mations or (post)buckling of the struts).
It this section, the microscale DVC approach is detailed. Microscale means
that we aim at measuring the kinematic transformation at the scale of the
struts (or the architecture). For that, we will extend the recently developed
approach [1] for the measurement of 3D displacement fields. Briefly, two impor-
tant ingredients are required. The first one is the use of an image-based FE
mesh [10, 12] that properly describe the architecture of the material. This
mesh is thus boundary-fitted at the architecture scale. The use of such a fine
mesh is required to well describe the complex displacements of the struts but
is not compatible with DVC since the grey-level distribution within the mesh
is almost homogeneous or in other words, its gradient is almost zero. To solve
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this issue, the second ingredient consists in adding a weak elastic regulariza-
tion [27, 28, 37, 38, 55, 57, 66] using the previously image-based FE model
whose geometry (and thus stiffness) is relevant at the architecture scale.

3.3.1 Image-based mesh generation

Image-based mesh generation consists in automatically constructing a FE mesh
from the voxel data. In general, the steps of this approach are: (i) segmentation
which consists in classifying each component of the material, (ii) boundary
definition and finally (iii) volumetric meshing. In this work, segmentation is
quite immediate as the foam is assumed to be composed of only void and
solid. Therefore, the domain of interest is entirely described by one grey-level
threshold value. This value used for both rendering and mesh generation was
optimized using a bisection algorithm so that the porosity of the segmented
geometry reaches the porosity value 0.96 given by the supplier. This led to take
γ = 56. In order to smoothly describe the boundary of the cellular geometry,
Gaussian filtering was also performed. The new grey-level values were defined
by the convolution:

c = Gσ ∗ I, (8)

where I is the reconstructed volume and Gσ is a Gaussian kernel (σ, the stan-
dard deviation, was chosen equal to 0.8). A value smaller than the threshold
value was assigned to the grey-level field at the top and bottom boundaries
of the region of interest so that a closed watertight region was obtained. Sur-
face extraction was then performed using the marching cubes algorithm [67]
available in the scikit-image Python library [68]. Fig. 7 illustrates the effect
of Gaussian blurring on the smoothness of the cellular geometry. This proce-
dure allows to reduce the geometric modeling error and therefore improves the
accuracy of the measured fields. We note that the mesh generation procedure
is performed on the 2 × 2 × 2 binned image of the reference configuration in
order to reduce the memory footprint.

Fig. 7 Surface representation of the cellular geometry using a low resolution image (50 ×
50× 50). (a) Without the Gaussian blur and (b) with the Gaussian blur with a kernel of 2
voxels (this value was exaggerated for visualisation purposes, in the analyses it was set to
0.8 voxel).
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A region of interest was extracted from the whole foam volume (see
Fig. 8(left)). The idea here is to use the microscale approach only in a region
where highly localized phenomena occur (i.e. where the grey-level mismatch
is high). We chose to extract a slice from the volume of the reference config-
uration Ir. This full cylindrical slice has a volume of 17.865 million of voxels
cube (more exactly a radius of 240 voxels and a height of 100 voxels). Fig. 8
shows again the extracted slice from the cylindrical volume in addition to its
finite element mesh. The mesh was generated using the CGAL library [69]
which provides the user to choose the mean finite element face’s size. The
process took 30 minutes to be completed. 91 isolated connected components
(isolated voxels or groups of voxels) were removed in a first mesh cleaning step.
The obtained mesh has 3 660 568 elements and 1 212 616 nodes. The average
element volume is around 0.34 voxels cube, which corresponds to an average
element size of 0.7 voxels.

Fig. 8 Position and definition of the region of interest (in blue color) considered in the
microscale DVC. In grey color: all the foam domain.

Now that the geometric characterization of the cellular architecture has
been presented, the use of such fine description of the cells as a direct support
for the DVC measurements is presented hereafter.

3.3.2 Elastic regularization

As stated above, the strong regularization based on the FE discretization
becomes obsolete if one considers solving the DVC problem (2) with the
microscale FE mesh depicted in Fig. 8(right). In particular, this unavoidably
makes the correlation matrix HS in Eq. (3) singular. As a first remedy, one
could use, for instance, the Levenberg-Marquardt algorithm with an update
strategy for stabilizing the Hessian matrix [70]. However, this lacks of physical
meaning and thus will not provide relevant derivative fields (such as strains
and stresses) within the cell-strut. Here we rather resort to mechanical reg-
ularization. More precisely, similarly as in [1], we add a penalty term to the
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functional (2). It enforces weakly the internal elastic equilibrium of the mate-
rial at the architecture scale by making use of our previously constructed
microscale FE mesh. The strategy is further outlined in the following and we
refer the interested reader to [1] for additional details on the approach.

From a fundamental point of view, a very rich survey of such Tikhonov-
based regularization strategies can be found for example in [29, 30]. The general
discrete optimization form is given by:

min
u∈Rn

S(u) + λ uTT u, (9)

where T is a linear operator and λ is a weighting parameter. The presence of
a FE discretization offers a great flexibility as it allows to directly construct
differential operators in T coming from physical models. For the coarse FE
meshes of Fig. 5(b-c) (i.e., for the mesoscale DVC), the measurement was reg-
ularized using the diffusion model which consists in setting T = L with L the
Laplacian operator [39, 54]. For the microscale DVC (i.e., associated to the
fine FE mesh of Fig. 8(right)), we make use of an elastic kernel for the reg-
ularization. Pioneering works [61, 71] considered the elastic energy, i.e. equal
to 1

2uTKu− uT f where K and f are respectively the FE stiffness matrix and
external force vector. This regularization introduces too much a priori and thus
filters too much the displacement fluctuations. Instead, we rather increase the
order of the regularization operator by considering the squared quadratic norm
of the elastic equilibrium gap Ku−f [31]. This approach was introduced in [27]
where it was used for the identification of cracks in a silicon carbide specimen.
It was later applied for DVC in particular in [28, 38] where a physical inter-
pretation of the regularization parameter λ was established. The advantage of
the latter regularization is that it is a fourth-order filter. It is consequently a
smoother regularization compared to the model based on the elastic energy.
Very recently, and in the same spirit as in this work, this regularization was
used for DVC measurements in heterogeneous materials, for example in [57]
where the damage in mortar was quantified, and in [66] where a printed pan-
tographic metamaterial was studied. Now, based on the proof-of-concept given
in [1] for 2D-DIC, the purpose is to make use of this regularization scheme for
microscale DVC measurement in cellular materials with complex and arbitrary
topologies.

Another advantage of the equilibrium gap regularization over the one based
on the energy is the possibility to remove the contribution of the regulariza-
tion onto the Dirichlet and non-zero Neumann boundaries, i.e. where f does
not vanish. Indeed, when choosing a region of interest inside the volume, the
external force vector f is unknown in practice at the non-free surfaces (we
may barely access to one resultant if the volume is completely cut in one
direction). As a consequence, the equilibrium has to be prescribed only at
the nodes of the bulk and at free boundaries. To do so, we simply introduce
a binary selection operator DK that selects theses nodes. As the remaining
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nodes are removed from the regularization, they are guided only by the corre-
lation. This can lead to a very irregular solution when the element size is very
small, which is the case in this study. That is why a curvature regularization of
the Dirichlet/non-zero Neumann boundaries is considered for these nodes. In
other words, in the part where no relevant physical information is available, we
perform a curvature-based regularization, and in the remaining domain where
the discrete mechanical equilibrium can be safely formulated, a mechanically
regularized DVC based on an elastic kernel is performed. From a mathemat-
ical viewpoint, by introducing the complementary selection operator DL, we
end up with the following normalized optimization functional [28]:

min
u∈Rndof

S(u)

S(v)
+ λK

‖DKK(E = 1, ν)u‖22
‖DKK(E = 1, ν)v‖22

+ λL
‖DLLu‖22
‖DLLv‖22

, (10)

where λK and λL are the regularization parameters for the bulk and the non-
free boundaries respectively. Note that Young’s modulus E for the elastic,
isotropic and homogeneous regularization model at the architecture scale is
fixed to 1 as K is proportional to E. The normalization of the functional is
performed using a trial shear wave displacement field v which allows to relate
the regularization parameters to its period. It can be defined for example by
v = (0, cos( 2π

T y),0). It has been highlighted in [28] that regularizing DVC
using the quadratic norm of the operators L and K can be seen as a fourth-
order low-pass filter acting on the measured displacements on both the bulk
and boundary regions. The regularization weights λK and λL can be related
to cut-off characteristic lengths denoted lK and lL, respectively, which verify:

λK =

(
lK
T

)4

, λL =

(
lL
T

)4

. (11)

It has been highlighted in [1] that the optimal cut-off wavelength lK in our case
of cellular materials can be approximately set to the cell size. This emanated
from a parametric L-curve study performed on an artificial 2D foam-like spec-
imen. The latter study has shown that the term associated with the grey-level
residuals in Eq. (10) captures the low frequency part of the solution, i.e. asso-
ciated with the mesoscale, while the local part of the displacement, i.e. below
the cell scale or at the microscale, is driven by the regularization that prescribes
a locally elastic behavior. This makes sense in continuum mechanics and will
allow to measure inealistic fields, such as large deformations of the struts, as
will be seen in Section 4. The values for the other parameters (Poisson ratio ν
and boundary regularization length lL) of the regularized scheme (10) will be
indicated and discussed in Section 4.2.

It is worth noting that the mechanically regularized approach increases sig-
nificantly the numerical cost of DVC as we add to the correlation Hessian HS

a matrix that has the same pattern as KTK. The higher the regularization
order, the denser the correlation linear system as the number of extra diag-
onals increases. From a general viewpoint, our implementation of microscale
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DVC which consists in performing classical FE assemblies over the whole
domain, cannot be seen as the solution for treating large scale problems. The
mesoscale and microscale DVC are two complementary approaches that should
be used concurrently, for instance in a multiscale framework. As a first step,
the mesoscale DVC will allow to initialize the microscale DVC in this work.

The microscale approach will be applied to the region of interest defined in
Fig. 8. The idea, again, is not to apply the weak elastic regularization scheme
on the whole image domain but only on the targeted slice. The microscale
approach allows to remove all the voxels in the voids from the computation
and as the considered foam is very porous (i.e. there is far more void than
material), the microscale DVC allows to treat only 3.6 million fine tetrahedral
elements that represent the micro-architecture. If the whole volume would be
registered (as it is the case for dense optical flow measurements), 17.8 million
voxels would have been treated.

3.3.3 Special care for the foam specimen

After meshing the region of interest, the regularization strategy for the bound-
ary surfaces must be defined. As we consider a compression test, and since
the specimen is cylindrical, the side surface of the slice should be free. In the
experimental setup, the foam sample is put inside a rigid transparent poly-
meric tube that plays the role of the load frame (see Fig. 2 right). Here, the
internal diameter of the tube is the result of a compromise aimed on the one
hand at minimizing the scan resolution (because of the cone beam technology,
the X-ray source - sample distance must be minimized) and on the other hand
at leaving a functional clearance (to get the sample move laterally). This solu-
tion has the merit of simplifying the setup of the reconstruction. If the lateral
movements of the sample was not hindered, the side would be free. Fig. 9(a)
illustrates the corresponding boundary conditions if the external boundary was
free during loading. In reality, this hypothesis is not verified. Unfortunately,
during loading, contact occurs between the loading cylinder and the external
boundary of the foam sample (see the green region in Fig. 9(b)). In order to
avoid making the hypothesis of traction free in regions where it is not the
case, we decide to penalize the nodes that belong to the external boundary in
addition to the top and bottom nodes (as shown in Fig. 9(c)).

Fig. 9 Description of the boundary regularization applied on the extracted foam slice.
(a) Ideal boundary conditions, (b) Experimental boundary conditions: contact occurs with
the compressive cylinder in the green region and (c) Nodes penalized with the curvature
regularization.
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Finally, concerning initialization, the first displacement guess is projected
from the mesoscale DVC solution. In order to do so, a strategy of displacement
exchange between two arbitrary FE meshes has been incorporated. In order
to project the displacement field from the coarse mesh to the fine mesh, one
needs to determine in which elements of the coarse mesh belong the nodes of
the fine mesh so that the FE interrogation (interpolation) is performed. The
practical resolution of this geometric problem is summarized in appendix A.

4 Analysis of the results

The following numerical computations were performed on a 64-bit station
equipped with Intel Xeon(R) CPU E5-2637 v2 processor (3.5 GHz frequency,
16 CPUs), 125.8 GB of RAM. The parallel assembly routines were computed
over the 16 CPUs using OpenMp directives. Concerning the linear system
solution, as the numerical solvers were used as a black box and no further
investigation concerning this aspect was performed, the CHOLMOD direct
solver [72] provided by the Python scikit-sparse library exploited only 8 CPUs
on this same machine. The different parameters for the different DVC analyses
are synthesized in Table 2.

The so-called ultimate error was estimated using synthetic images with
sub-pixel shifts using 3D FFT. The reported values are in good agreement with
the a priori estimates calculated after [38]. However, these values should be
considered as a lower bound of measurement uncertainty, as they do not take
into account the model error. Further analysis on measurement errors with
such an approach, was carried out in [1].

Table 2 Summary of the DVC parameters for the computations.

Mesoscale DVC Microscale DVC

Parameters Mesh 1 Mesh 2 Mesh 3 Mesh 4

Mean element length (voxels) 33 23 12 0.7
Matching functional Eq.(9) with T = L Eq. (10)
Regularization length (voxels) lL = 0 λ = 102(lL ≈ 35) lK = 35, lL = 35
Ultimate error (voxels) 3.16× 10−4 6.90× 10−4 8.16× 10−4 2.57× 10−4

Initialization Coarse to fine Solution of mesh 3
FE type 4 node tetrahedrons (Lagrange)
Mesh geometry Fig. 5 Fig. 8
Image definition (voxels3) 507× 504× 551 (Binning of a factor 3)
Sub-voxel evaluation B-spline (Eq. (4)) with p = 3
Gaussian pre-filtering (voxels) σ = 0.8 (Eq. (8))

4.1 Mesoscale DVC results

The mesoscale DVC approach allowed to obtain the final measurements dis-
played in Fig. 10. This same figure also shows the global residual indicators
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obtained for the different correlations. The first mesh resolution of 33 voxels
failed for the last loading state. It clearly shows that the finer the discretiza-
tion is chosen, the better the correlation is which is an obvious expectation in
image correlation, provided that a well-suited weak regularization is employed.
For the fourth loading state, the correlation algorithm converged probably to a
local minimum (because the correlation score is very high). A very large strain
can be reported (28.5%). This highlights the limit of the correlation approach
when choosing relatively large discretizations. For the first and second load-
ing states, as we are still in the linear regime, the correlation based on large
elements allowed to get a ”good” correlation score which was not the case for
the third and fourth states. The corresponding measured displacement fields
are shown in Fig. 11 for completeness. Overall, this first study based on meso
elements confirms the limits of a classical FE-DVC approach (classical in the
sense that it is equivalent to a mesoscale subset DVC approach).

Fig. 10 Deformed macro meshes obtained with mesoscale DVC for the different loading
states in addition to the global correlation score σ(r) (which stands for the standard deviation
of the residual field r defined in Eq. (5)).

4.2 Microscale DVC results and comparison with
mesocale DVC

4.2.1 Parameter set-up

As indicated in Section 3.3.2, the optimal regularization length lK can be
chosen equal to the cell length following previous study in 2D [1]. Here, we
first made several tests by varying the regularization length lK . The minimal
value that allowed the Gauss-Newton to converge is equal to 35 voxels which is
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Fig. 11 Displacement fields (in voxels unit) obtained using mesoscale DVC and the mesh
defined in Fig. 5(c).

quite near to the cell length. This re-confirms our characteristic length choice
of about the cell length. For the regularization length of the boundary given by
lL, the choice performed in [1] and which consisted in setting lL to its smallest
value was not verified in this case. We thus proceeded by bisection with a large
value of 50 voxels and gradually decreased it. lL was finally set equal to lK .
The elastic stiffness matrix K of the architecture was assembled with a Young’s
modulus E = 1 and an arbitrary Poisson coefficient ν = 0.28. Preliminary
numerical tests showed that the algorithm has no sensitivity with respect to
the Poisson ratio. In total, the mechanically regularized scheme started from
the initial DVC solution obtained with the mesoscale discretization shown in
Fig. 5(c). In the rest of the paper, this solution will be used as mesoscale
reference when comparing the microscale with the mesoscale DVC. Concerning
the computational time, the whole process (including mesoscale DVC as it
is the initial guess of microscale DVC) consumed 55 GB of RAM and lasted
20 minutes. We recall that the different parameters of both mesoscale and
microscale DVC are synthesized in Table.2.

4.2.2 Distribution of the residual field over the whole region

In order to compare quantitatively the residual maps of the DVC analyses
defined on different meshes, each result was post-processed such that all resid-
uals were expressed on the same support. More precisely, the residual maps
were computed at the integration points of the micro-scale FE mesh (thus
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only the cellular constituent domain is considered for the study) for all DVC
analyses. It requires a projection step that goes from the meso-scale mesh to
the micro-scale mesh as explained in Appendix A. To start comparing the
two DVC approaches, we plot the histogram of the residual field in Fig. 12
along with the residual field itself, see Fig. 13. First we observe that when the
correlation converges (i.e. for the three first loading states), the residual dis-
tribution is Gaussian with a zero mean value. We also see that the correlation
accuracy decreases with the increase of the loading increments, especially when
mesoscale elements are used. This can be explained by the fact that the kine-
matics becomes more and more complex, but the discretization is the same.
The same trend can be seen on the distribution of the grey-level residual field
in Fig. 13. Then, Fig. 12 shows that the standard deviation of the residual
distribution is divided at least by a factor of 2 for the first and second states
and by a factor of 4 for the third state for microscale DVC against mesoscale
DVC. Therefore the proposed architecture-driven regularization approach def-
initely improves the correlation accuracy for the third state. However, with
multiple initialization attempts, the fourth loading state (which has a 28.5%
strain level) could not be correlated correctly. This is detected with the sec-
ond peak in the histograms in Fig. 12(b) and corresponds to the large red
circular region observed on Fig. 13. This failed correlation is due to the fact
that the Gauss-Newton algorithm is very sensitive to the initialization and
none of the proposed initialization techniques presented previously succeeded.
Another source of the problem can be related to the chosen cylindrical mesh
that contains the foam sample. If we look closely to the shape of the external
boundary of the sample shown in Figs. 3, 8 or even 2, then we notice that
the boundary is not completely straight. This induces that a large part of void
was correlated in the elements which has perhaps increased the measurement
uncertainty for the fourth state in this region.

Fig. 12 Histogram of the residual field. (a) Mesoscale DVC and (b) Microscale DVC.
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Fig. 13 Distribution of the residual field for the different loading states and for both
microscale and mesoscale DVC.

4.2.3 Fine analysis of the measured kinematics over a local
region

From now on, we only focus on the third loading state as it is the state with
the most important strain level (12.3%) that we were able to compute.

In order to look for the differences between the two DVC approaches in
more details, let us extract from the foam slice another small region of interest
as indicated in Fig. 14. With this process, we get a planar view of the cel-
lular region. We display in Fig. 15 the obtained displacement fields in x, y, z

Fig. 14 Extraction of a region of analysis from the foam slice (clipping in the direction
(1,0,0) with the Paraview software).

directions (we recall that y is the compression direction) in addition to the
Von Mises strain field. From a global point of view, both solutions (micro and
meso) are similar. However, if we look very precisely at some struts, displace-
ment variations are measured at the sub-cellular scale with the micro approach
which is not the case for the meso solution. It can be seen that the strain is
homogeneous at the cell scale for the mesoscale approach, while it becomes
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possible to clearly locate the spans that concentrate the largest strains and
bendings with the microscale counterpart. Microscale DVC makes it possible
to extract much more detailed and valuable information from the same raw
data.

Fig. 15 Comparison of mesoscale and microscale DVC. Left: Mesoscale DVC. Right:
Microscale DVC. From top to bottom: transverse displacement ux, axial displacement uy ,
transverse displacement uz and Von Mises strain field εvm = ‖ε‖F (Frobenius norm).

In order to see even more clearly the differences between the mesoscale and
microscale solutions, we finally proceed to a practical visualization technique
as follows. As we can also segment the images of the deformed configurations,
we can verify visually if the displacement field obtained by the DVC method
allows to align the initial configuration on the deformed configuration. Fig. 16
illustrates this verification approach. We can see in the extracted region a large
number of cell struts that undergo geometric non-linearities like buckling or
large deformations. We also observe some kind of localized bands. The obtained
results confirm in 3D the performance of the microscale approach observed
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in 2D [1]. The difference between the micro and meso DVC measurements
is clear: the meso solution only allows low order transformations at the cell
scale and is thus completely unable to represent the complex local kinematic
of each individual cell-strut. On the contrary, the developed microscale DVC
does allow to properly measure the non-linear kinematic transformation of the
cell-struts.

For completeness, a zoom on some regions especially where large deforma-
tions/rotations occurs is performed in Fig. 17 in order to further appreciate
the differences between the meso and micro solutions. As right before, these
figures consist in superimposing, on the deformed image Id, the mesh con-
structed on the reference image Ir, advected by the measured displacement
field. It can be seen again that the microscale approach accurately identified
the large localized deformations of individual struts, whereas its mesoscale
counterpart failed. This constitutes a clear evidence that the proposed elas-
tic regularization does not act as a strong regularization that constrains the
kinematic measurement in the space of purely elastic solutions. Indeed, the
measured displacement does not correspond at all to the elastic model used
for the regularization. The regularization only consists in prescribing a local
elastic behavior that allows to complement mechanically the partial measure-
ment at the cell-scale given by standard the grey-level metric. This offers the
opportunity to measure and quantify non-linear kinematics which is a novelty
in experimental mechanics.

From a mechanical point of view, any DVC method (subset, finite element,
possibly regularized)—if it relies on a kinematic description above the micro-
structure scale—does not allow at all to represent the complex local kinematics
of the material. Worse, the approach described as meso here shows that the
individual struts deform in tension/compression (see Fig. 17(e)), while they
clearly deform in bending. This is due to the simple fact that the chosen
mesoscopic kinematics (required because of the lack of texture at the lower
scale) is too poor. On the contrary, the proposed method describes the local
bending kinematics (see Fig. 17(f)), for each individual beam. Not only the
type of mechanism (stretching-dominated versus bending dominated) is well
identified but the amplitude of the deformation of each beam is accurately
measured. We can see that the proposed tool allows a much better quality
measurement and avoids misinterpretation of the class of dominance involved
in crushing.
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Fig. 16 Difference between mesoscale and microscale DVC. (a) Segmented image Ir, (b)
segmented image Id for the third loading state, (c) warping the reference state with the
solution coming from mesoscale DVC and (d) warping the reference state with the solution
coming from microscale DVC. Ωr and Ωd stand for the reference and deformed configurations
respectively.
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Fig. 17 (a)-(d) Two regions in the reference configuration Ωr. (b)-(e) In grey color: Ωd. In
red color: Ωr +umesoscale(Ωr). (c)-(f) In grey color: Ωd. In red color: Ωr +umicroscale(Ωr).

5 Conclusion and perspectives

In this study, an in-situ compression test was performed in an X-ray µ-CT
scanner on an open cell polyurethane foam. Two DVC frameworks were devel-
oped. A first global FE-DVC based on large finite elements that do not take
into account the underlying architecture only allowed to obtain a mesoscale
and homogenized displacement/strain field. It was shown that this approach
reaches its limits when localized complex subcellular kinematics occur. From a
mechanical point of view, this type of meso analysis does not allow to analyze
the nature of the mechanisms involved in the crushing of architected mate-
rials. Indeed, this mesoscopic measurement suggests that the beams deform
in tension/compression and the dominance type is stretching. It is therefore
impossible to exploit classic DVC measurements at the scale of the architec-
ture. The kinematic model used to measure the displacements is too poor
and it is not possible to consider richer approximation spaces due to the
absence of lower scale texture. In order to tackle this problem, we make use
of an architecture driven mechanical regularization of DVC. More precisely,
the measurement support is a sample-specific image-based finite element mesh
that describes the cellular architecture. Provided the correct setting of the
parameters like grey-level threshold, mesh refinement–here related to voxel
size–, geometric approximation and regularization, regularization parameter–
here related to the mean cell length and fixed from a previous two-dimensional
L-curve study, see again [1]– the proposed microscale DVC, made it possi-
ble to measure accurately particularly complex three-dimensional kinematics
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(such as buckling or bending) in the absence of pattern at the strut scale. The
efforts on the implementation allowed to treat a real, representative case (with
several millions of degrees of freedom). This approach was able to measure,
in the volume, local displacements and deformations of high complexity. Not
only the type of deformation dominance (stretching-dominated versus bend-
ing dominated) was correctly identified but the amplitude and location of the
deformations of each beam is perfectly reproduced. This tool is intended to be
used for the analysis of local deformation mechanisms during in-situ tests.

Although the method was capable of providing accurate measurements of
individual strut of a foam sample in compression, there are still a number of
areas for improvement.

As explained above, the threshold used for segmentation was chosen so
that the volume fraction of the image-based model approximated as closely
as possible the porosity of the foam as specified by the supplier. It would be
interesting to further investigate the effect of this choice.

In order to reduce the geometric errors related to noise and poor resolu-
tion (imposed by the imaging tool), it would be interesting to perform high
resolution scans of the studied samples with high energy µ-CT scanners (for
example using Synchrotron sources) so that a reference geometry in which a
high trust is placed can be set once for all [57]. From this reference image, one
can build faithful geometries for both the simulation and correlation aspects.
For correlation, one can go back to conventional µ-CT scanners in order to
perform in-situ tests.

The uncertainties at top and bottom boundary nodes seem higher than
in the bulk. To reduce the region of interest, only a section of the image was
analysed. Some struts may have been cut in two in the thickness, resulting in
very small weakly connected elements. The associated stiffness can be very low
and so the regularization. This higher uncertainty on the edges does not have
a strong effect on the measurement but would require further developments
such as improving the boundary regularization [32].

Among other perspectives, a very interesting avenue concerns the regular-
ization operator. It is indeed possible, with exactly the same formalism, to
consider more advanced models (in particular non-linear ones) [73]. In partic-
ular, it would be interesting to update the constitutive parameters and the
geometry stiffness of the regularization model, which is possible within the
very same framework [37, 73].

The problem of high performance computing for regularized DVC is of
double difficulty. First, from a memory point of vue, the equilibrium gap reg-
ularization increases the numerical cost of the DVC algorithm as the number
of extra diagonals increases in the left hand side of the resolved linear system.
The computational cost issue may become a real concern in three dimensions.
Domain decomposition techniques or model reduction techniques could then
be used advantageously [41, 54, 55]. In addition, adequate iterative solvers
must be adapted for the special Gauss-Newton algorithm of DVC [74].
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One of the most difficult aspects in image correlation is the accurate ini-
tialization of the gradient-based optimization scheme. Even though coarse to
fine and reduced basis approaches seem to be sufficient in many applications,
their use is quite manual and heuristic in the sense that multiple attempts are
performed before running the final correlation. Another prospect of this work
would be to investigate other robust initialization strategies [75].

Appendix A FE interrogation for arbitrary
points

We present in this appendix a procedure that allows to perform automatically
the displacement exchange between two arbitrary finite-element meshes. We
consider the following steps for solving this geometric problem:

Step 1: Location of the nearest face of the FE mesh to the point

Efficient data structures (very common in collision detection algorithms) can
be efficiently used to speed up point queries with respect to complex geometric
objects represented by faces. In this work, we mainly use a rootine from the
CGAL library [69] and PyMesh[76]. Efficient point queries such as intersec-
tions, distance computation, ray shooting can be performed using Axis Aligned
Bounding Boxes (AABB) trees [77]. This allows to detect the nearest face to
an arbitrary point.

Step 2: Location of the tetrahedral element containing the point

After determining the nearest face, the location test is performed on the tetra-
hedrons that share this same face (they are at most two). To do so, one can
consider two methods:

• Method 1: Computation of the barycentric coordinates by resolution of the
linear system: 

x =

m∑
i=1

λiti

m∑
i=1

λi = 1

(A1)

If λi > 0, ∀i ∈ {1, ...,m} then the point x belongs to the tetrahedron
bounded by the nodes (ti)i∈{1,...,m}. m is the number of nodes per convex
set (4 in our case).

• Method 2: A faster method which does not consist in solving a linear
system can be considered. We only evaluate the signed distance of the point
to each of the tetrahedron faces. First, the orientation of the faces must
be determined so that all the face normal vectors point towards the same
direction. This is given by an orientation matrix denoted O ∈ R3×4 that
depends of the used mesh. Each column of O represents the indices of the
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nodes of the tetrahedron faces. The point x belongs to the tetrahedron if
the distances to all the faces have the same sign. This is written as follows:

(x− tO2,i
)Tni(tO2,i

) < 0, ∀i ∈ {1, .., 4} (A2)

where ni(tO2,i
) is the normal vector at node tO2,i

(which is the second node
of the face i). It is defined by ni(t2) = (tO2,i

− tO1,i
)× (tO3,i

− tO2,i
).

Step 3: Evaluation of the displacement field at the point

Once the tetrahedron containing the point is determined, the isopara-
metric transformation (x =

∑
iNi(ξ)ti) is inverted in order to find the

isoparametric coordinate ξ of the point x. The finite element interpolation
formula can afterwards be applied to evaluate the desired displacement field
(ufine(x) =

∑
iNi(ξ)u

coarse(ti)), where ti are again the nodes of the tetrahe-
dron.
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