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Abstract—Scrummaging is a critical and intense phase of 

rugby union, involving considerable forces and presenting the 

highest risk of injury during a rugby game. Despite its 

importance as an indicator of game success, the forces generated 

by individual players within the scrummaging have yet to be 

investigated. Studies have mainly focused on individual and 

collective pushing forces against scrummaging machines, with 

little attention to the ground reaction forces. However, these 

ground reaction forces are essential for dynamic biomechanical 

analyses, particularly in sports performance and reduction of 

injury risks. While instrumented insoles have been validated for 

gait and movements involving primarily vertical forces, their 

application in rugby scrummaging remains unexplored. The 

objective of this paper was to develop a method to estimate the 

three components of ground reaction forces, using a 

combination of instrumented insoles and machine learning. A 

Long-Short-Term-Memory (LSTM) neural network was 

trained to estimate ground reaction forces from data collected 

by instrumented insoles and inertial measurement units. 

Thirteen participants were evaluated to validate the method, 

performing thrusts against an individual scrum machine with 

feet on force plates. The average root mean square errors over 

all subjects between the estimated forces and the reference force 

plate data were 58.4±12.0N on the Antero-Posterior axis, 

21.2±2.0N on the Medio-Lateral axis, and 61.1±9.2N on the 

vertical axis. These findings demonstrate the potential of using 

instrumented insoles to accurately estimate the ground reaction 

forces, particularly the thrust force, of rugby players during 

scrummaging. 
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I. INTRODUCTION 

Rugby scrummaging is a method used to restart play 
following minor infringements, aimed at retaining or gaining 
possession of the ball. This critical and high-intensity phase of 
rugby union involves significant force generation and poses 
the greatest injury risk during a match. Moreover, scrum 
performance is a key indicator of game success, with the 
number of scrums won being positively correlated with match 
outcomes [1,2]. 

A key determinant of scrum success is the horizontal force 
exerted by the entire pack, especially during the sustained 
phase [3]. Previous studies have measured both individual [4-
6] and collective [7, 8] forces during scrummaging, mainly 
using instrumented scrummaging machines. However, these 
machines tend to overestimate the forces due to the rigidity of 
their structure [9] and are inadequate for capturing the 
contribution of each player within the scrum. This is critical, 
as only 65% of the sum of individual player efforts is typically 
translated into collective pack force [10]. In addition, under 
these conditions, the measured forces typically reflect only the 
horizontal component of the pushing force. However, the 
vertical and lateral components are crucial for maintaining 
stability during scrummaging [4]. To address this, Du Toit et 
al. [11] used force plates to measure the three-dimensional 
Ground Reaction Forces (GRF) of each player in a scrum 
while the entire pack was pushing against a machine. Despite 
this, such methods are unsuitable for capturing forces during 
live scrummaging, where significant differences exist 
compared to machine-based scrums. To bridge this gap, some 
researchers have employed pressure sensor pads placed on the 
shoulders of all eight players to measure individual horizontal 
forces during live scrummaging [8, 11, 12]. However, these 
pads tend to underestimate forces as they do not cover the full 
contact area between a player's shoulder and another player 
[11, 12]. 

To address the challenge of measuring individual GRF in 
real-world conditions, new wearable systems, such as 
instrumented insoles, have been developed. These systems are 
primarily used for applications involving vertical GRF, as they 
typically measure the normal force exerted on the insole. 
Recent studies have employed machine learning techniques to 
estimate the three components of GRF using data from 
instrumented insoles [13-16]. While the specific machine 
learning models vary, the activities studied predominantly 
involve cyclic and repeatable movements like walking or 
running. Among the various models, Long-Short-Term-
Memory (LSTM) networks, which can capture the temporal 

 



dependencies of movement data, appear particularly well-
suited for this application. 

To date, no study has investigated the prediction of the 
three components of GRF from instrumented insoles and 
using machine learning during rugby scrummaging. Thus, 
the objective of this study was to develop a method for 
estimating the individual three-dimensional GRF during 
rugby scrummaging, using instrumented insole data and 
machine learning. In this context, we hypothesize that better 
knowledge of the individual pushing forces could lead to 
better scrum management from the trainers to find the 
combination that produces the greatest thrust force. 

II. MATERIAL AND METHODS 

A. Materials and protocol 

Thirteen healthy participants were recruited for this 
study (3 females, 10 males; age: 26 +/- 6 years; height: 174 
+/- 6.2 cm; weight: 71.6 +/- 11.7 kg). All participants were 
free from lower limb injuries and were recreationally active 
subjects with no specific experience in rugby scrummaging. 
They wore non-standardized rugby shoes during the 
experiment. Each participant provided written informed 
consent before participation. The experimental protocol was 
approved by the Ethical Committee of the University of 
Toulouse. 

Participants wore commercial instrumented insoles 
(Loadsol Pro®, Novel, Munich, Germany) inside their 
shoes. Each insole was equipped with capacitive force 
sensors measuring normal forces applied perpendicularly to 
the sensor surface. The design of the insole divided the 
resultant forces into three distinct areas: heel, medial, and 
lateral. An integrated inertial unit (IMU) was attached to the 
shoelaces on each foot (Fig. 1.b). Data from the insoles and 
IMU were recorded synchronously at 200Hz via the mobile 
application Loadapp (Novel, Munich, Germany). Two force 
plates (AMTI OR6 Series) covered with artificial turf (Fig. 
1.a) recorded GRF at 1000Hz. Data from the force plates 
served as the reference data. 

Before the experiment, participants completed a self-
warm-up and practiced pushing against a scrum machine 
(Fig. 1.a). The insoles were calibrated according to the 
manufacturer's instructions: after walking a few steps, 
participants stood still and lifted one foot at a time. 
Calibration was successful when the displayed body weight 
on the application matched the actual body weight within a 

margin of error of ±10 N. If discrepancies were found, the 
calibration was repeated until the displayed body weight 
matched the participant's actual body weight. 

Each participant performed four pushing trials, lasting 
between 30 and 40 seconds, against a fixed scrummaging 
machine, with brief foot repositioning as needed. Before 
and after pushing, participants were asked to tap their right 
foot on the force plate to synchronize insoles and force plate 
data post-experiment. Participants were instructed to 
maintain a straight back, parallel to the ground, with hip, 
knee, and ankle angles at approximately 90°. Between 
pushes, the insoles were removed from the rugby shoes and 
participants were given a five-minute rest. 

B. Data pre-processing 

A total of 50 valid pushes across the thirteen participants 
were analyzed, with 3 or 4 valid trials per participant. 

Insole missing data were gap-filled using cubic 
interpolation at a frequency of 200Hz. Force plate data were 
resampled at 200Hz and synchronized with the insole data. 
This was achieved by comparing the vertical GRF from the 
force plates with the insole force data and performing cross-
correlation around the peak effort corresponding to the 
moment when participants tapped their right foot on the 
force plate before pushing. Data from the left and right 
insoles and inertial units were already synchronized during 
recording by the Loadapp. 

Data outside the interval between the first and the 
second right foot strikes on the force plate were removed to 
retain only the data relating to the pushing. 

The force data recorded from the different areas of the 
insoles, and inertial data given by the 3D accelerometer and 
the 3D gyroscope of each insole constituted the input data. 
The target data consisted of the three components of the 
GRF measured by the two force plates. Both input and target 
data were filtered using a fourth-order low-pass Butterworth 
filter with a cut-off frequency of 5Hz. The body weight (in 
Newtons) and the shoe size of each participant were added 
to the input data without filtering. 

Input and target data were normalized and divided into 
three datasets: training, validation, and test datasets. The test 
dataset comprised data from two trials of one participant 
while the remaining trials were included in the training 
dataset. Data from the other participants were randomly 
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Fig. 1. Experimental setup (a) and instrumented insoles (b) used for this study. 



split, with 80% allocated to the training set, and 20% to the 
validation set (Fig. 2). 

C. Model architecture and training 

The neural network employed in this study was 
implemented using Pytorch [17]. It consisted of a LSTM 
layer, followed by a fully connected Multi-Layer Perceptron 
(MLP) layer with a Rectified Linear Unit (ReLU) activation 
function (Fig. 3). The network was trained using the 
Adaptative Moment Estimation (Adam) optimizer and a 
mean squared error (MSE) loss function. The 
hyperparameters considered included learning rate, weight 
decay, sequence length, LSTM hidden dimension, number 
of LSTM layers, and MLP hidden dimension. Various 
configurations of these hyperparameters were explored to 
identify the optimal model architecture, as detailed in Table 
1. 

To determine the optimal set of hyperparameters, a grid 
search procedure relying on the Root Mean Square Error 
(RMSE) and Pearson correlation coefficient (r) between the 
predicted and reference values of each GRF component was 
set up. 

TABLE I.  VALUES OF THE TESTED PARAMETERS FOR THE LSTM 

AND THE MLP LAYER. 

Parameters Tested values 

Learning rate 1e-4, 1e-6 

Weight decay 1e-3, 1e-4 

Sequence length 200, 400 

Hidden dimension (LSTM) 64, 128 

Number of layers (LSTM) 2, 3 

Hidden dimension (MLP) 64, 128 

 

Cross-validation was conducted using a leave-one-
subject-out approach over thirteen iterations, corresponding 
to the number of subjects in the dataset. In each iteration, 
one subject was selected to feed the test dataset with two 
trials, as described previously, ensuring that all subjects 
were eventually evaluated. 

III. RESULTS 

The optimal hyperparameters identified were: 

• Learning rate: 1e-4 

• Weight decay: 1e-3 

• Batch size: 64 

• Sequence length: 200 

• Hidden dimension (LSTM): 64  

• Number of layers (LSTM): 3 

• Hidden dimension (MLP): 64 

The model's performances were assessed by computing 
the mean RMSE and r over the two trials contained in the 
test dataset for each subject. The results are presented in 
Table 2. 

The mean RMSE over all subjects were 58.4±12.0N on 
the Antero-Posterior (AP) axis, 21.2±2.0N on the Medio-
Lateral (ML) axis, and 61.1±9.2N on the vertical (V) axis. 

The mean correlation coefficients r over all subjects 
were 0.942±0.027 on the AP axis, 0.867±0.017 on the ML 
axis, and 0.808±0.042 on the vertical axis. 

The mean percentages of RMSE compared to the 
average resultant force over all subjects were 6.8±1.3% on 
the AP axis, 2.5±0.2% on the ML axis, and 7.2±1.0% on the 
vertical axis. 

Fig. 4 shows the predicted GRF on both feet compared 
to the GRF measured by the force plates for one subject in 
the first 10 seconds of the trial.

 
 

Fig. 2 Process of data division test, training, and validation datasets. 

The process was repeated thirteen times for each subject to enable 
cross-validation across all subjects. 

 
 

Fig. 3 Model architecture combining LSTM and MLP layers. 



TABLE II.  PERFORMANCES OF THE MODEL TRAINED FOR EACH SUBJECT. 

 RMSE (N) r % RMSE compared to mean resultant force 

 AP ML V AP ML V AP ML V 

Subject 1 56.5±10.7 27.3±1.8 65.6±3.3 0.912±0.017 0.828±0.059 0.752±0.030 8.0±1.2 3.9±0.4 9.3±0.1 

Subject 2 70.9±6.2 21.1±0.6 64.9±15.9 0.932±0.008 0.785±0.009 0.764±0.071 9.1±0.6 2.7±0.0 8.3±1.9 

Subject 3 118.3±23.2 35.0±6.4 92.4±15.6 0.913±0.044 0.836±0.021 0.813±0.021 10.2±1.8 3.0±0.6 8.0±1.2 

Subject 4 48.8±8.1 17.6±0.5 71.0±6.2 0.960±0.015 0.794±0.020 0.733±0.030 6.8±1.5 2.5±0.2 9.8±1.3 

Subject 5 64.6±26.4 27.4±2.3 80.0±17.5 0.980±0.009 0.900±0.030 0.903±0.016 6.1±2.4 2.6±0.3 7.6±1.6 

Subject 6 63.4±16.8 28.5±1.0 57.0±3.4 0.951±0.023 0.692±0.012 0.802±0.045 7.0±1.6 3.2±0.2 6.3±0.1 

Subject 7 73.0±5.7 24.0±4.7 76.3±7.4 0.936±0.016 0.925±0.013 0.843±0.028 7.1±0.8 2.4±0.4 7.4±1.0 

Subject 8 78.2±3.6 24.4±0.8 53.5±0.1 0.813±0.132 0.809±0.005 0.579±0.082 11.2±0.5 3.5±0.1 7.6±0.0 

Subject 9 75.7±42.1 25.5±2.5 86.3±30.6 0.913±0.076 0.857±0.025 0.675±0.135 8;2±4.5 2.8±0.2 9.3±3.2 

Subject 10 25.0±4.0 10.2±1.1 34.8±2.9 0.987±0.001 0.945±0.013 0.874±0.048 4.4±0.6 1.8±0.1 6.2±0.4 

Subject 11 44.6±1.3 19.4±4.1 59.7±12.6 0.976±0.005 0.948±0.011 0.887±0.013 4.8±0.1 2.1±0.4 6.5±1.3 

Subject 12 19.0±4.2 6.2±0.1 22.8±1.5 0.984±0.001 0.975±0.002 0.940±0.011 3.3±0.9 1.1±0.0 4.0±0.2 

Subject 13 21.4±3.7 9.5±0.4 29.8±2.5 0.989±0.004 0.975±0.006 0.935±0.021 2.7±0.7 1.2±0.1 3.7±0.7 

 

IV. DISCUSSION 

This study assessed the effectiveness of a LSTM neural 
network model in estimating the three components of 
ground reaction forces using data from instrumented insoles 
during rugby scrummaging.  

In this study, personalized models were trained for each 
subject by incorporating thrust data from the subject 
evaluated into the training set. Honert et al. [18] 
demonstrated that the use of personalized models can 
significantly reduce prediction errors, lowering the mean 
error percentage from 7.7% to 2.9% on the vertical axis and 
from 8.0% to 5.2% on the AP axis.  Additionally, training a 

generalizable model typically requires a large and diverse 
dataset [19], which was not available in this study. 

The results of this study are consistent with the order of 
magnitude reported in the literature, even for different 
activities. Kim et al. [20] estimated the three components of 
the GRF using uniaxial load cells during gait, reporting 
mean RMSE values on both feet of 15.5N (AP), 9.83N 
(ML), and 65.12N (V), with correlation coefficients of 0.96 
(AP), 0.90 (ML), and 0.97 (V). Similarly, Kammoun et al. 
[16] reported mean RMSE values on both feet for gait of 
36.49±2.07N (AP), 15.08±0.82N (ML), and 59.94±2.65N 
(V), along with mean correlation coefficients of 0.63±0.049 
(AP), 0.75±0.32 (ML), and 0.978±0.002N (V). Both studies 
found higher RMSE values on the vertical axis, as GRFs are 
the largest in this direction during gait. In scrummaging, 
however, both the AP and vertical axes exhibit high GRF 
magnitudes, which explains why the RMSE on the AP axis 
in this study was similar to that of the vertical axis. The 
correlation coefficients obtained in this study were 
comparable to those reported by Kim et al. [20] and higher 
than those reported by Kammoun et al. [16]. 

While the results of this study are consistent with the 
order of magnitude reported in the literature, variations 
between subjects were observed. Subject 3 exhibited higher 
RMSE values on all axes compared to the mean across all 
subjects. However, despite the higher RMSE, this subject's 
correlation coefficients and percentage RMSE relative to the 
average resultant force were good across all axes. This 
discrepancy could be attributed to improper calibration or 
placement of the insoles in the rugby shoes. Conversely, 
several subjects (notably subjects 10, 12, and 13) showed 
particularly strong model performance, with RMSE values 
on all axes lower than the overall mean. One possible 
explanation is that these subjects generated lower resultant 
forces with less variability during the thrust phase, leading 
to reduced error. Regarding correlation coefficients, subject 
6 (ML axis) and subject 8 (V axis) showed lower values 
compared to the mean over all subjects, which may be due 
to excessive slipping during the thrust phase. 

Stade Toulousain Rugby, French National Association for Research 

and Technology (ANRT) 

 
Fig. 4 GRF estimated from the LSTM (blue) and measured by the 

force plates (black) for one subject during scrummaging, on the 

Antero-Posterior (AP), Medio-Lateral (ML), and Vertical (V) axes. 



Comparing the results of this study with those in the 
literature was challenging for two main reasons. First, most 
studies focus on evaluating GRF during cyclic activities 
such as gait or running. Kammoun et al. [16] highlighted 
that model performance is highly dependent on the specific 
activity the model is trained on. Second, many studies report 
their results as a percentage of RMSE relative to body 
weight [14, 15, 21], which is relevant for activities like gait 
or running, where vertical forces dominate. In contrast, 
scrummaging involves primarily GRF in the AP and V 
directions, making normalization by body weight less 
meaningful. Therefore, in this study, results were presented 
in terms of RMSE for each axis, as well as RMSE 
normalized by the average resultant force during the entire 
thrust. This approach was deemed more relevant for 
scrummaging and could be practically useful for trainers 
who may apply this method to evaluate GRF in real-world 
conditions. 

This study has several limitations that should be 
acknowledged.  First, it was conducted with recreationally 
active subjects, most of whom had little to no experience in 
rugby scrummaging.  This lack of experience may have led 
to improper posture and increased slipping on the artificial 
turf, resulting in higher errors. Second, the subjects did not 
wear standardized shoes, even though [15] recommends 
doing so. This decision was made to simulate real-world 
conditions where players would wear their own rugby shoes, 
introducing variability in the measured GRF due to 
differences in footwear. Lastly, the instrumented insoles 
used in this study did not always perfectly fit the 
participants' shoe sizes. This mismatch may have led to 
lower measured forces and reduced accuracy in GRF 
estimation. 

Despite this, results demonstrated that the proposed 
method can accurately measure 3D GRF individually and 
in-field, with an error percentage on all three axes relative 
to the mean resultant force below 8%. When combined with 
machine learning, instrumented insoles offer a reliable and 
practical tool for coaches to better understand player 
interactions in the scrum and identify the combination that 
generates the highest thrust force. 

V. CONCLUSION 

In conclusion, this study demonstrated the potential of 

using instrumented insoles combined with machine 

learning to accurately estimate ground reaction forces of 

rugby players during scrummaging. Future work will focus 

on expanding the dataset to include junior and professional 

rugby players and exploring various machine learning 

models to enhance GRF estimation with instrumented 

insoles. Additionally, applying Statistical Parametric 

Mapping (SPM) could provide valuable insights by 

assessing model performance across the entire trial, helping 

to identify which phase of the thrust (impact or sustained) 

generates the most significant errors. 
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