Develop Model for Controlled Depth Milling by Abrasive Water Jet of Ti6Al4V at Jet Inclination Angle
Abstract
Abrasive water jet machining (AWJM) is an interesting solution for the production of shallow pockets in metal sheets made of titanium alloys. Indeed, it produces low cutting forces and heat generation and prevents deformation of these parts after machining. In addition, it has the advantage of only using two raw materials: sand and water. It is possible to generate pocket edges with an imposed geometry using AWJM, but it is necessary to tilt the axis of the jet. The material removal mechanism is then a function of the inclination angle. The presented study propose an improved model for modelling the pocket profile in TiAl6V parts. The experimental results shows that the model is efficient as the precision is around 5%.
Origin | Publisher files allowed on an open archive |
---|---|
Licence |